ECON: Explicit Clothed humans Optimized via Normal integration
Yuliang Xiu
·
Jinlong Yang
·
Xu Cao
·
Dimitrios Tzionas
·
Michael J. Black
CVPR 2023 (Highlight)
ECON is designed for "Human digitization from a color image", which combines the best properties of implicit and explicit representations, to infer high-fidelity 3D clothed humans from in-the-wild images, even with **loose clothing** or in **challenging poses**. ECON also supports **multi-person reconstruction** and **SMPL-X based animation**.
## News :triangular_flag_on_post:
- [2023/02/27] ECON got accepted by CVPR 2023 as Highlight (top 10%)!
- [2023/01/12] [Carlos Barreto](https://twitter.com/carlosedubarret/status/1613252471035494403) creates a Blender Addon ([Download](https://carlosedubarreto.gumroad.com/l/CEB_ECON), [Tutorial](https://youtu.be/sbWZbTf6ZYk)).
- [2023/01/08] [Teddy Huang](https://github.com/Teddy12155555) creates [install-with-docker](docs/installation-docker.md) for ECON .
- [2023/01/06] [Justin John](https://github.com/justinjohn0306) and [Carlos Barreto](https://github.com/carlosedubarreto) creates [install-on-windows](docs/installation-windows.md) for ECON .
- [2022/12/22] is now available, created by [Aron Arzoomand](https://github.com/AroArz).
- [2022/12/15] Both demo and arXiv are available.
## TODO
- [ ] Blender add-on for FBX export
- [ ] Full RGB texture generation
## Key idea: d-BiNI
d-BiNI jointly optimizes front-back 2.5D surfaces such that: (1) high-frequency surface details agree with normal maps, (2) low-frequency surface variations, including discontinuities, align with SMPL-X surfaces, and (3) front-back 2.5D surface silhouettes are coherent with each other.
|Front-view|Back-view|Side-view|
|:--:|:--:|:---:|
|![](assets/front-45.gif)|![](assets/back-45.gif)|![](assets/double-90.gif)||
Please consider cite BiNI if it also helps on your project
```bibtex
@inproceedings{cao2022bilateral,
title={Bilateral normal integration},
author={Cao, Xu and Santo, Hiroaki and Shi, Boxin and Okura, Fumio and Matsushita, Yasuyuki},
booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part I},
pages={552--567},
year={2022},
organization={Springer}
}
```
Table of Contents
-
Instructions
-
Demo
-
Applications
-
Citation
## Instructions
- See [installion doc for Docker](docs/installation-docker.md) to run a docker container with pre-built image for ECON demo
- See [installion doc for Windows](docs/installation-windows.md) to install all the required packages and setup the models on _Windows_
- See [installion doc for Ubuntu](docs/installation-ubuntu.md) to install all the required packages and setup the models on _Ubuntu_
- See [magic tricks](docs/tricks.md) to know a few technical tricks to further improve and accelerate ECON
- See [testing](docs/testing.md) to prepare the testing data and evaluate ECON
## Demo
```bash
# For single-person image-based reconstruction (w/ l visualization steps, 1.8min)
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
# For multi-person image-based reconstruction (see config/econ.yaml)
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi
# To generate the demo video of reconstruction results
python -m apps.multi_render -n
# To animate the reconstruction with SMPL-X pose parameters
python -m apps.avatarizer -n
```
## More Qualitative Results
| ![OOD Poses](assets/OOD-poses.jpg) |
| :------------------------------------: |
| _Challenging Poses_ |
| ![OOD Clothes](assets/OOD-outfits.jpg) |
| _Loose Clothes_ |
## Applications
| ![SHHQ](assets/SHHQ.gif) | ![crowd](assets/crowd.gif) |
| :----------------------------------------------------------------------------------------------------: | :-----------------------------------------: |
| _ECON could provide pseudo 3D GT for [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_ | _ECON supports multi-person reconstruction_ |
## Citation
```bibtex
@inproceedings{xiu2023econ,
title = {{ECON: Explicit Clothed humans Optimized via Normal integration}},
author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
}
```
## Acknowledgments
We thank [Lea Hering](https://is.mpg.de/person/lhering) and [Radek Daněček](https://is.mpg.de/person/rdanecek) for proof reading, [Yao Feng](https://ps.is.mpg.de/person/yfeng), [Haven Feng](https://is.mpg.de/person/hfeng), and [Weiyang Liu](https://wyliu.com/) for their feedback and discussions, [Tsvetelina Alexiadis](https://ps.is.mpg.de/person/talexiadis) for her help with the AMT perceptual study.
Here are some great resources we benefit from:
- [ICON](https://github.com/YuliangXiu/ICON) for SMPL-X Body Fitting
- [BiNI](https://github.com/hoshino042/bilateral_normal_integration) for Bilateral Normal Integration
- [MonoPortDataset](https://github.com/Project-Splinter/MonoPortDataset) for Data Processing, [MonoPort](https://github.com/Project-Splinter/MonoPort) for fast implicit surface query
- [rembg](https://github.com/danielgatis/rembg) for Human Segmentation
- [MediaPipe](https://google.github.io/mediapipe/getting_started/python.html) for full-body landmark estimation
- [PyTorch-NICP](https://github.com/wuhaozhe/pytorch-nicp) for non-rigid registration
- [smplx](https://github.com/vchoutas/smplx), [PyMAF-X](https://www.liuyebin.com/pymaf-x/), [PIXIE](https://github.com/YadiraF/PIXIE) for Human Pose & Shape Estimation
- [CAPE](https://github.com/qianlim/CAPE) and [THuman](https://github.com/ZhengZerong/DeepHuman/tree/master/THUmanDataset) for Dataset
- [PyTorch3D](https://github.com/facebookresearch/pytorch3d) for Differential Rendering
Some images used in the qualitative examples come from [pinterest.com](https://www.pinterest.com/).
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)).
## Contributors
Kudos to all of our amazing contributors! ECON thrives through open-source. In that spirit, we welcome all kinds of contributions from the community.
_Contributor avatars are randomly shuffled._
---
## License
This code and model are available for non-commercial scientific research purposes as defined in the [LICENSE](LICENSE) file. By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE).
## Disclosure
MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. While MJB is a part-time employee of Meshcapade, his research was performed solely at, and funded solely by, the Max Planck Society.
## Contact
For technical questions, please contact yuliang.xiu@tue.mpg.de
For commercial licensing, please contact ps-licensing@tue.mpg.de