ECON: Explicit Clothed humans Optimized via Normal integration

Yuliang Xiu · Jinlong Yang · Xu Cao · Dimitrios Tzionas · Michael J. Black

CVPR 2023 (Highlight)

Logo


PyTorch Lightning cupy Twitter discord invitation link

Google Colab Docker Blender

Paper PDF Project Page youtube views


ECON is designed for "Human digitization from a color image", which combines the best properties of implicit and explicit representations, to infer high-fidelity 3D clothed humans from in-the-wild images, even with **loose clothing** or in **challenging poses**. ECON also supports **multi-person reconstruction** and **SMPL-X based animation**.

## News :triangular_flag_on_post: - [2023/02/27] ECON got accepted by CVPR 2023 as Highlight (top 10%)! - [2023/01/12] [Carlos Barreto](https://twitter.com/carlosedubarret/status/1613252471035494403) creates a Blender Addon ([Download](https://carlosedubarreto.gumroad.com/l/CEB_ECON), [Tutorial](https://youtu.be/sbWZbTf6ZYk)). - [2023/01/08] [Teddy Huang](https://github.com/Teddy12155555) creates [install-with-docker](docs/installation-docker.md) for ECON . - [2023/01/06] [Justin John](https://github.com/justinjohn0306) and [Carlos Barreto](https://github.com/carlosedubarreto) creates [install-on-windows](docs/installation-windows.md) for ECON . - [2022/12/22] Google Colab is now available, created by [Aron Arzoomand](https://github.com/AroArz). - [2022/12/15] Both demo and arXiv are available. ## TODO - [ ] Blender add-on for FBX export - [ ] Full RGB texture generation ## Key idea: d-BiNI d-BiNI jointly optimizes front-back 2.5D surfaces such that: (1) high-frequency surface details agree with normal maps, (2) low-frequency surface variations, including discontinuities, align with SMPL-X surfaces, and (3) front-back 2.5D surface silhouettes are coherent with each other. |Front-view|Back-view|Side-view| |:--:|:--:|:---:| |![](assets/front-45.gif)|![](assets/back-45.gif)|![](assets/double-90.gif)||
Please consider cite BiNI if it also helps on your project ```bibtex @inproceedings{cao2022bilateral, title={Bilateral normal integration}, author={Cao, Xu and Santo, Hiroaki and Shi, Boxin and Okura, Fumio and Matsushita, Yasuyuki}, booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part I}, pages={552--567}, year={2022}, organization={Springer} } ```

Table of Contents
  1. Instructions
  2. Demo
  3. Applications
  4. Citation

## Instructions - See [installion doc for Docker](docs/installation-docker.md) to run a docker container with pre-built image for ECON demo - See [installion doc for Windows](docs/installation-windows.md) to install all the required packages and setup the models on _Windows_ - See [installion doc for Ubuntu](docs/installation-ubuntu.md) to install all the required packages and setup the models on _Ubuntu_ - See [magic tricks](docs/tricks.md) to know a few technical tricks to further improve and accelerate ECON - See [testing](docs/testing.md) to prepare the testing data and evaluate ECON ## Demo ```bash # For single-person image-based reconstruction (w/ l visualization steps, 1.8min) python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results # For multi-person image-based reconstruction (see config/econ.yaml) python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi # To generate the demo video of reconstruction results python -m apps.multi_render -n # To animate the reconstruction with SMPL-X pose parameters python -m apps.avatarizer -n ```
## More Qualitative Results | ![OOD Poses](assets/OOD-poses.jpg) | | :------------------------------------: | | _Challenging Poses_ | | ![OOD Clothes](assets/OOD-outfits.jpg) | | _Loose Clothes_ | ## Applications | ![SHHQ](assets/SHHQ.gif) | ![crowd](assets/crowd.gif) | | :----------------------------------------------------------------------------------------------------: | :-----------------------------------------: | | _ECON could provide pseudo 3D GT for [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_ | _ECON supports multi-person reconstruction_ |

## Citation ```bibtex @inproceedings{xiu2023econ, title = {{ECON: Explicit Clothed humans Optimized via Normal integration}}, author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, } ```
## Acknowledgments We thank [Lea Hering](https://is.mpg.de/person/lhering) and [Radek Daněček](https://is.mpg.de/person/rdanecek) for proof reading, [Yao Feng](https://ps.is.mpg.de/person/yfeng), [Haven Feng](https://is.mpg.de/person/hfeng), and [Weiyang Liu](https://wyliu.com/) for their feedback and discussions, [Tsvetelina Alexiadis](https://ps.is.mpg.de/person/talexiadis) for her help with the AMT perceptual study. Here are some great resources we benefit from: - [ICON](https://github.com/YuliangXiu/ICON) for SMPL-X Body Fitting - [BiNI](https://github.com/hoshino042/bilateral_normal_integration) for Bilateral Normal Integration - [MonoPortDataset](https://github.com/Project-Splinter/MonoPortDataset) for Data Processing, [MonoPort](https://github.com/Project-Splinter/MonoPort) for fast implicit surface query - [rembg](https://github.com/danielgatis/rembg) for Human Segmentation - [MediaPipe](https://google.github.io/mediapipe/getting_started/python.html) for full-body landmark estimation - [PyTorch-NICP](https://github.com/wuhaozhe/pytorch-nicp) for non-rigid registration - [smplx](https://github.com/vchoutas/smplx), [PyMAF-X](https://www.liuyebin.com/pymaf-x/), [PIXIE](https://github.com/YadiraF/PIXIE) for Human Pose & Shape Estimation - [CAPE](https://github.com/qianlim/CAPE) and [THuman](https://github.com/ZhengZerong/DeepHuman/tree/master/THUmanDataset) for Dataset - [PyTorch3D](https://github.com/facebookresearch/pytorch3d) for Differential Rendering Some images used in the qualitative examples come from [pinterest.com](https://www.pinterest.com/). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)). ## Contributors Kudos to all of our amazing contributors! ECON thrives through open-source. In that spirit, we welcome all kinds of contributions from the community. _Contributor avatars are randomly shuffled._ ---
## License This code and model are available for non-commercial scientific research purposes as defined in the [LICENSE](LICENSE) file. By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE). ## Disclosure MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. While MJB is a part-time employee of Meshcapade, his research was performed solely at, and funded solely by, the Max Planck Society. ## Contact For technical questions, please contact yuliang.xiu@tue.mpg.de For commercial licensing, please contact ps-licensing@tue.mpg.de