## Getting started Start by cloning the repo: ```bash git clone --depth 1 git@github.com:YuliangXiu/ECON.git cd ECON ``` ## Environment - **GPU Memory > 12GB** start with [docker compose](https://docs.docker.com/compose/) ```bash # you can change your container name by passing --name "parameter" docker compose run [--name myecon] econ ``` ## Docker container's shell ```bash # activate the pre-build env cd code conda activate econ # install libmesh & libvoxelize cd lib/common/libmesh python setup.py build_ext --inplace cd ../libvoxelize python setup.py build_ext --inplace ``` ## Register at [ICON's website](https://icon.is.tue.mpg.de/) ![Register](../assets/register.png) Required: - [SMPL](http://smpl.is.tue.mpg.de/): SMPL Model (Male, Female) - [SMPL-X](http://smpl-x.is.tue.mpg.de/): SMPL-X Model, used for training - [SMPLIFY](http://smplify.is.tue.mpg.de/): SMPL Model (Neutral) - [PIXIE](https://icon.is.tue.mpg.de/user.php): PIXIE SMPL-X estimator :warning: Click **Register now** on all dependencies, then you can download them all with **ONE** account. ## Downloading required models and extra data ```bash cd ~/code bash fetch_data.sh # requires username and password ``` ## :whale2: **todo** - **Image Environment Infos** - Ubuntu 18 - CUDA = 11.3 - Python = 3.8 - [X] pre-built image with docker compose - [ ] docker run command, Dockerfile - [ ] verify on WSL (Windows) ## Citation :+1: Please consider citing these awesome HPS approaches: PyMAF-X, PIXIE ``` @article{pymafx2022, title={PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images}, author={Zhang, Hongwen and Tian, Yating and Zhang, Yuxiang and Li, Mengcheng and An, Liang and Sun, Zhenan and Liu, Yebin}, journal={arXiv preprint arXiv:2207.06400}, year={2022} } @inproceedings{PIXIE:2021, title={Collaborative Regression of Expressive Bodies using Moderation}, author={Yao Feng and Vasileios Choutas and Timo Bolkart and Dimitrios Tzionas and Michael J. Black}, booktitle={International Conference on 3D Vision (3DV)}, year={2021} } ```