SOLVER: MAX_ITER: 500000 TYPE: Adam BASE_LR: 0.00005 GAMMA: 0.1 STEPS: [0] EPOCHS: [0] # DEBUG: False LOGDIR: '' DEVICE: cuda # NUM_WORKERS: 8 SEED_VALUE: -1 LOSS: KP_2D_W: 300.0 KP_3D_W: 300.0 HF_KP_2D_W: 1000.0 HF_KP_3D_W: 1000.0 GL_HF_KP_2D_W: 30. FEET_KP_2D_W: 0. SHAPE_W: 0.06 POSE_W: 60.0 VERT_W: 0.0 VERT_REG_W: 300.0 INDEX_WEIGHTS: 2.0 # Loss weights for surface parts. (24 Parts) PART_WEIGHTS: 0.3 # Loss weights for UV regression. POINT_REGRESSION_WEIGHTS: 0.5 TRAIN: NUM_WORKERS: 8 BATCH_SIZE: 64 LOG_FERQ: 100 SHUFFLE: True PIN_MEMORY: True BHF_MODE: 'full_body' TEST: BATCH_SIZE: 32 MODEL: # IWP, Identity rotation and Weak Perspective Camera USE_IWP_CAM: True USE_GT_FL: False PRED_PITCH: False MESH_MODEL: 'smplx' ALL_GENDER: False EVAL_MODE: True PyMAF: BACKBONE: 'hr48' HF_BACKBONE: 'res50' MAF_ON: True MLP_DIM: [256, 128, 64, 5] HF_MLP_DIM: [256, 128, 64, 5] MLP_VT_DIM: [256, 128, 64, 3] N_ITER: 3 SUPV_LAST: False AUX_SUPV_ON: True HF_AUX_SUPV_ON: False HF_BOX_CENTER: True DP_HEATMAP_SIZE: 56 GRID_FEAT: False USE_CAM_FEAT: True HF_IMG_SIZE: 224 HF_DET: 'pifpaf' OPT_WRIST: True ADAPT_INTEGR: True PRED_VIS_H: True HAND_VIS_TH: 0.1 GRID_ALIGN: USE_ATT: True USE_FC: False ATT_FEAT_IDX: 2 ATT_HEAD: 1 ATT_STARTS: 1 RES_MODEL: DECONV_WITH_BIAS: False NUM_DECONV_LAYERS: 3 NUM_DECONV_FILTERS: - 256 - 256 - 256 NUM_DECONV_KERNELS: - 4 - 4 - 4 POSE_RES_MODEL: INIT_WEIGHTS: True NAME: 'pose_resnet' PRETR_SET: 'imagenet' # 'none' 'imagenet' 'coco' # PRETRAINED: 'data/pretrained_model/resnet50-19c8e357.pth' PRETRAINED_IM: 'data/pretrained_model/resnet50-19c8e357.pth' PRETRAINED_COCO: 'data/pretrained_model/pose_resnet_50_256x192.pth.tar' EXTRA: TARGET_TYPE: 'gaussian' HEATMAP_SIZE: - 48 - 64 SIGMA: 2 FINAL_CONV_KERNEL: 1 DECONV_WITH_BIAS: False NUM_DECONV_LAYERS: 3 NUM_DECONV_FILTERS: - 256 - 256 - 256 NUM_DECONV_KERNELS: - 4 - 4 - 4 NUM_LAYERS: 50 HR_MODEL: INIT_WEIGHTS: True NAME: pose_hrnet PRETR_SET: 'coco' # 'none' 'imagenet' 'coco' PRETRAINED_IM: 'data/pretrained_model/hrnet_w48-imgnet-8ef0771d.pth' PRETRAINED_COCO: 'data/pretrained_model/pose_hrnet_w48_256x192.pth' TARGET_TYPE: gaussian IMAGE_SIZE: - 256 - 256 HEATMAP_SIZE: - 64 - 64 SIGMA: 2 EXTRA: PRETRAINED_LAYERS: - 'conv1' - 'bn1' - 'conv2' - 'bn2' - 'layer1' - 'transition1' - 'stage2' - 'transition2' - 'stage3' - 'transition3' - 'stage4' FINAL_CONV_KERNEL: 1 STAGE2: NUM_MODULES: 1 NUM_BRANCHES: 2 BLOCK: BASIC NUM_BLOCKS: - 4 - 4 NUM_CHANNELS: - 48 - 96 FUSE_METHOD: SUM STAGE3: NUM_MODULES: 4 NUM_BRANCHES: 3 BLOCK: BASIC NUM_BLOCKS: - 4 - 4 - 4 NUM_CHANNELS: - 48 - 96 - 192 FUSE_METHOD: SUM STAGE4: NUM_MODULES: 3 NUM_BRANCHES: 4 BLOCK: BASIC NUM_BLOCKS: - 4 - 4 - 4 - 4 NUM_CHANNELS: - 48 - 96 - 192 - 384 FUSE_METHOD: SUM