# -*- coding: utf-8 -*- # # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # Using this computer program means that you agree to the terms # in the LICENSE file included with this software distribution. # Any use not explicitly granted by the LICENSE is prohibited. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # For comments or questions, please email us at pixie@tue.mpg.de # For commercial licensing contact, please contact ps-license@tuebingen.mpg.de import os import torch import torchvision import torch.nn.functional as F import torch.nn as nn import numpy as np from skimage.io import imread import cv2 from .models.encoders import ResnetEncoder, MLP, HRNEncoder from .models.moderators import TempSoftmaxFusion from .models.SMPLX import SMPLX from .utils import util from .utils import rotation_converter as converter from .utils import tensor_cropper from .utils.config import cfg class PIXIE(object): def __init__(self, config=None, device="cuda:0"): if config is None: self.cfg = cfg else: self.cfg = config self.device = device # parameters setting self.param_list_dict = {} for lst in self.cfg.params.keys(): param_list = cfg.params.get(lst) self.param_list_dict[lst] = { i: cfg.model.get("n_" + i) for i in param_list } # Build the models self._create_model() # Set up the cropping modules used to generate face/hand crops from the body predictions self._setup_cropper() def forward(self, data): # encode + decode param_dict = self.encode( {"body": { "image": data }}, threthold=True, keep_local=True, copy_and_paste=False, ) opdict = self.decode(param_dict["body"], param_type="body") return opdict def _setup_cropper(self): self.Cropper = {} for crop_part in ["head", "hand"]: data_cfg = self.cfg.dataset[crop_part] scale_size = (data_cfg.scale_min + data_cfg.scale_max) * 0.5 self.Cropper[crop_part] = tensor_cropper.Cropper( crop_size=data_cfg.image_size, scale=[scale_size, scale_size], trans_scale=0, ) def _create_model(self): self.model_dict = {} # Build all image encoders # Hand encoder only works for right hand, for left hand, flip inputs and flip the results back self.Encoder = {} for key in self.cfg.network.encoder.keys(): if self.cfg.network.encoder.get(key).type == "resnet50": self.Encoder[key] = ResnetEncoder().to(self.device) elif self.cfg.network.encoder.get(key).type == "hrnet": self.Encoder[key] = HRNEncoder().to(self.device) self.model_dict[f"Encoder_{key}"] = self.Encoder[key].state_dict() # Build the parameter regressors self.Regressor = {} for key in self.cfg.network.regressor.keys(): n_output = sum(self.param_list_dict[f"{key}_list"].values()) channels = ([2048] + self.cfg.network.regressor.get(key).channels + [n_output]) if self.cfg.network.regressor.get(key).type == "mlp": self.Regressor[key] = MLP(channels=channels).to(self.device) self.model_dict[f"Regressor_{key}"] = self.Regressor[ key].state_dict() # Build the extractors # to extract separate head/left hand/right hand feature from body feature self.Extractor = {} for key in self.cfg.network.extractor.keys(): channels = [ 2048 ] + self.cfg.network.extractor.get(key).channels + [2048] if self.cfg.network.extractor.get(key).type == "mlp": self.Extractor[key] = MLP(channels=channels).to(self.device) self.model_dict[f"Extractor_{key}"] = self.Extractor[ key].state_dict() # Build the moderators self.Moderator = {} for key in self.cfg.network.moderator.keys(): share_part = key.split("_")[0] detach_inputs = self.cfg.network.moderator.get(key).detach_inputs detach_feature = self.cfg.network.moderator.get(key).detach_feature channels = [2048 * 2 ] + self.cfg.network.moderator.get(key).channels + [2] self.Moderator[key] = TempSoftmaxFusion( detach_inputs=detach_inputs, detach_feature=detach_feature, channels=channels, ).to(self.device) self.model_dict[f"Moderator_{key}"] = self.Moderator[ key].state_dict() # Build the SMPL-X body model, which we also use to represent faces and # hands, using the relevant parts only self.smplx = SMPLX(self.cfg.model).to(self.device) self.part_indices = self.smplx.part_indices # -- resume model model_path = self.cfg.pretrained_modelpath if os.path.exists(model_path): checkpoint = torch.load(model_path) for key in self.model_dict.keys(): util.copy_state_dict(self.model_dict[key], checkpoint[key]) else: print(f"pixie trained model path: {model_path} does not exist!") exit() # eval mode for module in [ self.Encoder, self.Regressor, self.Moderator, self.Extractor ]: for net in module.values(): net.eval() def decompose_code(self, code, num_dict): """Convert a flattened parameter vector to a dictionary of parameters""" code_dict = {} start = 0 for key in num_dict: end = start + int(num_dict[key]) code_dict[key] = code[:, start:end] start = end return code_dict def part_from_body(self, image, part_key, points_dict, crop_joints=None): """crop part(head/left_hand/right_hand) out from body data, joints also change accordingly""" assert part_key in ["head", "left_hand", "right_hand"] assert "smplx_kpt" in points_dict.keys() if part_key == "head": # use face 68 kpts for cropping head image indices_key = "face" elif part_key == "left_hand": indices_key = "left_hand" elif part_key == "right_hand": indices_key = "right_hand" # get points for cropping part_indices = self.part_indices[indices_key] if crop_joints is not None: points_for_crop = crop_joints[:, part_indices] else: points_for_crop = points_dict["smplx_kpt"][:, part_indices] # crop cropper_key = "hand" if "hand" in part_key else part_key points_scale = image.shape[-2:] cropped_image, tform = self.Cropper[cropper_key].crop( image, points_for_crop, points_scale) # transform points(must be normalized to [-1.1]) accordingly cropped_points_dict = {} for points_key in points_dict.keys(): points = points_dict[points_key] cropped_points = self.Cropper[cropper_key].transform_points( points, tform, points_scale, normalize=True) cropped_points_dict[points_key] = cropped_points return cropped_image, cropped_points_dict @torch.no_grad() def encode( self, data, threthold=True, keep_local=True, copy_and_paste=False, body_only=False, ): """Encode images to smplx parameters Args: data: dict key: image_type (body/head/hand) value: image: [bz, 3, 224, 224], range [0,1] image_hd(needed if key==body): a high res version of image, only for cropping parts from body image head_image: optinal, well-cropped head from body image left_hand_image: optinal, well-cropped left hand from body image right_hand_image: optinal, well-cropped right hand from body image Returns: param_dict: dict key: image_type (body/head/hand) value: param_dict """ for key in data.keys(): assert key in ["body", "head", "hand"] feature = {} param_dict = {} # Encode features for key in data.keys(): part = key # encode feature feature[key] = {} feature[key][part] = self.Encoder[part](data[key]["image"]) # for head/hand image if key == "head" or key == "hand": # predict head/hand-only parameters from part feature part_dict = self.decompose_code( self.Regressor[part](feature[key][part]), self.param_list_dict[f"{part}_list"], ) # if input is part data, skip feature fusion: share feature is the same as part feature # then predict share parameters feature[key][f"{key}_share"] = feature[key][key] share_dict = self.decompose_code( self.Regressor[f"{part}_share"]( feature[key][f"{part}_share"]), self.param_list_dict[f"{part}_share_list"], ) # compose parameters param_dict[key] = {**share_dict, **part_dict} # for body image if key == "body": fusion_weight = {} f_body = feature["body"]["body"] # extract part feature for part_name in ["head", "left_hand", "right_hand"]: feature["body"][f"{part_name}_share"] = self.Extractor[ f"{part_name}_share"](f_body) # -- check if part crops are given, if not, crop parts by coarse body estimation if ("head_image" not in data[key].keys() or "left_hand_image" not in data[key].keys() or "right_hand_image" not in data[key].keys()): # - run without fusion to get coarse estimation, for cropping parts # body only body_dict = self.decompose_code( self.Regressor[part](feature[key][part]), self.param_list_dict[part + "_list"], ) # head share head_share_dict = self.decompose_code( self.Regressor["head" + "_share"]( feature[key]["head" + "_share"]), self.param_list_dict["head" + "_share_list"], ) # right hand share right_hand_share_dict = self.decompose_code( self.Regressor["hand" + "_share"]( feature[key]["right_hand" + "_share"]), self.param_list_dict["hand" + "_share_list"], ) # left hand share left_hand_share_dict = self.decompose_code( self.Regressor["hand" + "_share"]( feature[key]["left_hand" + "_share"]), self.param_list_dict["hand" + "_share_list"], ) # change the dict name from right to left left_hand_share_dict[ "left_hand_pose"] = left_hand_share_dict.pop( "right_hand_pose") left_hand_share_dict[ "left_wrist_pose"] = left_hand_share_dict.pop( "right_wrist_pose") param_dict[key] = { **body_dict, **head_share_dict, **left_hand_share_dict, **right_hand_share_dict, } if body_only: param_dict["moderator_weight"] = None return param_dict prediction_body_only = self.decode(param_dict[key], param_type="body") # crop for part_name in ["head", "left_hand", "right_hand"]: part = part_name.split("_")[-1] points_dict = { "smplx_kpt": prediction_body_only["smplx_kpt"], "trans_verts": prediction_body_only["transformed_vertices"], } image_hd = torchvision.transforms.Resize(1024)( data["body"]["image"]) cropped_image, cropped_joints_dict = self.part_from_body( image_hd, part_name, points_dict) data[key][part_name + "_image"] = cropped_image # -- encode features from part crops, then fuse feature using the weight from moderator for part_name in ["head", "left_hand", "right_hand"]: part = part_name.split("_")[-1] cropped_image = data[key][part_name + "_image"] # if left hand, flip it as if it is right hand if part_name == "left_hand": cropped_image = torch.flip(cropped_image, dims=(-1, )) # run part regressor f_part = self.Encoder[part](cropped_image) part_dict = self.decompose_code( self.Regressor[part](f_part), self.param_list_dict[f"{part}_list"], ) part_share_dict = self.decompose_code( self.Regressor[f"{part}_share"](f_part), self.param_list_dict[f"{part}_share_list"], ) param_dict["body_" + part_name] = { **part_dict, **part_share_dict } # moderator to assign weight, then integrate features f_body_out, f_part_out, f_weight = self.Moderator[ f"{part}_share"](feature["body"][f"{part_name}_share"], f_part, work=True) if copy_and_paste: # copy and paste strategy always trusts the results from part feature["body"][f"{part_name}_share"] = f_part elif threthold and part == "hand": # for hand, if part weight > 0.7 (very confident, then fully trust part) part_w = f_weight[:, [1]] part_w[part_w > 0.7] = 1.0 f_body_out = (feature["body"][f"{part_name}_share"] * (1.0 - part_w) + f_part * part_w) feature["body"][f"{part_name}_share"] = f_body_out else: feature["body"][f"{part_name}_share"] = f_body_out fusion_weight[part_name] = f_weight # save weights from moderator, that can be further used for optimization/running specific tasks on parts param_dict["moderator_weight"] = fusion_weight # -- predict parameters from fused body feature # head share head_share_dict = self.decompose_code( self.Regressor["head" + "_share"](feature[key]["head" + "_share"]), self.param_list_dict["head" + "_share_list"], ) # right hand share right_hand_share_dict = self.decompose_code( self.Regressor["hand" + "_share"]( feature[key]["right_hand" + "_share"]), self.param_list_dict["hand" + "_share_list"], ) # left hand share left_hand_share_dict = self.decompose_code( self.Regressor["hand" + "_share"]( feature[key]["left_hand" + "_share"]), self.param_list_dict["hand" + "_share_list"], ) # change the dict name from right to left left_hand_share_dict[ "left_hand_pose"] = left_hand_share_dict.pop( "right_hand_pose") left_hand_share_dict[ "left_wrist_pose"] = left_hand_share_dict.pop( "right_wrist_pose") param_dict["body"] = { **body_dict, **head_share_dict, **left_hand_share_dict, **right_hand_share_dict, } # copy tex param from head param dict to body param dict param_dict["body"]["tex"] = param_dict["body_head"]["tex"] param_dict["body"]["light"] = param_dict["body_head"]["light"] if keep_local: # for local change that will not affect whole body and produce unnatral pose, trust part param_dict[key]["exp"] = param_dict["body_head"]["exp"] param_dict[key]["right_hand_pose"] = param_dict[ "body_right_hand"]["right_hand_pose"] param_dict[key]["left_hand_pose"] = param_dict[ "body_left_hand"]["right_hand_pose"] return param_dict def convert_pose(self, param_dict, param_type): """Convert pose parameters to rotation matrix Args: param_dict: smplx parameters param_type: should be one of body/head/hand Returns: param_dict: smplx parameters """ assert param_type in ["body", "head", "hand"] # convert pose representations: the output from network are continous repre or axis angle, # while the input pose for smplx need to be rotation matrix for key in param_dict: if "pose" in key and "jaw" not in key: param_dict[key] = converter.batch_cont2matrix(param_dict[key]) if param_type == "body" or param_type == "head": param_dict["jaw_pose"] = converter.batch_euler2matrix( param_dict["jaw_pose"])[:, None, :, :] # complement params if it's not in given param dict if param_type == "head": batch_size = param_dict["shape"].shape[0] param_dict["abs_head_pose"] = param_dict["head_pose"].clone() param_dict["global_pose"] = param_dict["head_pose"] param_dict["partbody_pose"] = self.smplx.body_pose.unsqueeze( 0).expand( batch_size, -1, -1, -1)[:, :self.param_list_dict["body_list"]["partbody_pose"]] param_dict["neck_pose"] = self.smplx.neck_pose.unsqueeze(0).expand( batch_size, -1, -1, -1) param_dict["left_wrist_pose"] = self.smplx.neck_pose.unsqueeze( 0).expand(batch_size, -1, -1, -1) param_dict["left_hand_pose"] = self.smplx.left_hand_pose.unsqueeze( 0).expand(batch_size, -1, -1, -1) param_dict["right_wrist_pose"] = self.smplx.neck_pose.unsqueeze( 0).expand(batch_size, -1, -1, -1) param_dict[ "right_hand_pose"] = self.smplx.right_hand_pose.unsqueeze( 0).expand(batch_size, -1, -1, -1) elif param_type == "hand": batch_size = param_dict["right_hand_pose"].shape[0] param_dict["abs_right_wrist_pose"] = param_dict[ "right_wrist_pose"].clone() dtype = param_dict["right_hand_pose"].dtype device = param_dict["right_hand_pose"].device x_180_pose = (torch.eye(3, dtype=dtype, device=device).unsqueeze(0).repeat( 1, 1, 1)) x_180_pose[0, 2, 2] = -1.0 x_180_pose[0, 1, 1] = -1.0 param_dict["global_pose"] = x_180_pose.unsqueeze(0).expand( batch_size, -1, -1, -1) param_dict["shape"] = self.smplx.shape_params.expand( batch_size, -1) param_dict["exp"] = self.smplx.expression_params.expand( batch_size, -1) param_dict["head_pose"] = self.smplx.head_pose.unsqueeze(0).expand( batch_size, -1, -1, -1) param_dict["neck_pose"] = self.smplx.neck_pose.unsqueeze(0).expand( batch_size, -1, -1, -1) param_dict["jaw_pose"] = self.smplx.jaw_pose.unsqueeze(0).expand( batch_size, -1, -1, -1) param_dict["partbody_pose"] = self.smplx.body_pose.unsqueeze( 0).expand( batch_size, -1, -1, -1)[:, :self.param_list_dict["body_list"]["partbody_pose"]] param_dict["left_wrist_pose"] = self.smplx.neck_pose.unsqueeze( 0).expand(batch_size, -1, -1, -1) param_dict["left_hand_pose"] = self.smplx.left_hand_pose.unsqueeze( 0).expand(batch_size, -1, -1, -1) elif param_type == "body": # the predcition from the head and hand share regressor is always absolute pose batch_size = param_dict["shape"].shape[0] param_dict["abs_head_pose"] = param_dict["head_pose"].clone() param_dict["abs_right_wrist_pose"] = param_dict[ "right_wrist_pose"].clone() param_dict["abs_left_wrist_pose"] = param_dict[ "left_wrist_pose"].clone() # the body-hand share regressor is working for right hand # so we assume body network get the flipped feature for the left hand. then get the parameters # then we need to flip it back to left, which matches the input left hand param_dict["left_wrist_pose"] = util.flip_pose( param_dict["left_wrist_pose"]) param_dict["left_hand_pose"] = util.flip_pose( param_dict["left_hand_pose"]) else: exit() return param_dict def decode(self, param_dict, param_type): """Decode model parameters to smplx vertices & joints & texture Args: param_dict: smplx parameters param_type: should be one of body/head/hand Returns: predictions: smplx predictions """ if "jaw_pose" in param_dict.keys() and len( param_dict["jaw_pose"].shape) == 2: self.convert_pose(param_dict, param_type) elif param_dict["right_wrist_pose"].shape[-1] == 6: self.convert_pose(param_dict, param_type) # concatenate body pose partbody_pose = param_dict["partbody_pose"] param_dict["body_pose"] = torch.cat( [ partbody_pose[:, :11], param_dict["neck_pose"], partbody_pose[:, 11:11 + 2], param_dict["head_pose"], partbody_pose[:, 13:13 + 4], param_dict["left_wrist_pose"], param_dict["right_wrist_pose"], ], dim=1, ) # change absolute head&hand pose to relative pose according to rest body pose if param_type == "head" or param_type == "body": param_dict["body_pose"] = self.smplx.pose_abs2rel( param_dict["global_pose"], param_dict["body_pose"], abs_joint="head") if param_type == "hand" or param_type == "body": param_dict["body_pose"] = self.smplx.pose_abs2rel( param_dict["global_pose"], param_dict["body_pose"], abs_joint="left_wrist", ) param_dict["body_pose"] = self.smplx.pose_abs2rel( param_dict["global_pose"], param_dict["body_pose"], abs_joint="right_wrist", ) if self.cfg.model.check_pose: # check if pose is natural (relative rotation), if not, set relative to 0 (especially for head pose) # xyz: pitch(positive for looking down), yaw(positive for looking left), roll(rolling chin to left) for pose_ind in [14]: # head [15-1, 20-1, 21-1]: curr_pose = param_dict["body_pose"][:, pose_ind] euler_pose = converter._compute_euler_from_matrix(curr_pose) for i, max_angle in enumerate([20, 70, 10]): euler_pose_curr = euler_pose[:, i] euler_pose_curr[euler_pose_curr != torch.clamp( euler_pose_curr, min=-max_angle * np.pi / 180, max=max_angle * np.pi / 180, )] = 0.0 param_dict[ "body_pose"][:, pose_ind] = converter.batch_euler2matrix( euler_pose) # SMPLX verts, landmarks, joints = self.smplx( shape_params=param_dict["shape"], expression_params=param_dict["exp"], global_pose=param_dict["global_pose"], body_pose=param_dict["body_pose"], jaw_pose=param_dict["jaw_pose"], left_hand_pose=param_dict["left_hand_pose"], right_hand_pose=param_dict["right_hand_pose"], ) smplx_kpt3d = joints.clone() # projection cam = param_dict[param_type + "_cam"] trans_verts = util.batch_orth_proj(verts, cam) predicted_landmarks = util.batch_orth_proj(landmarks, cam)[:, :, :2] predicted_joints = util.batch_orth_proj(joints, cam)[:, :, :2] prediction = { "vertices": verts, "transformed_vertices": trans_verts, "face_kpt": predicted_landmarks, "smplx_kpt": predicted_joints, "smplx_kpt3d": smplx_kpt3d, "joints": joints, "cam": param_dict[param_type + "_cam"], } # change the order of face keypoints, to be the same as "standard" 68 keypoints prediction["face_kpt"] = torch.cat( [prediction["face_kpt"][:, -17:], prediction["face_kpt"][:, :-17]], dim=1) prediction.update(param_dict) return prediction def decode_Tpose(self, param_dict): """return body mesh in T pose, support body and head param dict only""" verts, _, _ = self.smplx( shape_params=param_dict["shape"], expression_params=param_dict["exp"], jaw_pose=param_dict["jaw_pose"], ) return verts