# This script is borrowed and extended from https://github.com/shunsukesaito/PIFu/blob/master/lib/model/SurfaceClassifier.py import torch import scipy import numpy as np import torch.nn as nn import torch.nn.functional as F from lib.pymafx.core import path_config from lib.pymafx.utils.geometry import projection import logging logger = logging.getLogger(__name__) from .transformers.net_utils import PosEnSine from .transformers.transformer_basics import OurMultiheadAttention from lib.pymafx.utils.imutils import j2d_processing class TransformerDecoderUnit(nn.Module): def __init__(self, feat_dim, attri_dim=0, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): super(TransformerDecoderUnit, self).__init__() self.feat_dim = feat_dim self.attn_type = attn_type self.pos_en_flag = pos_en_flag self.P = P assert attri_dim == 0 if self.pos_en_flag: pe_dim = 10 self.pos_en = PosEnSine(pe_dim) else: pe_dim = 0 self.attn = OurMultiheadAttention(feat_dim+attri_dim+pe_dim*3, feat_dim+pe_dim*3, feat_dim, n_head) # cross-attention self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) self.activation = nn.ReLU(inplace=True) self.norm = nn.BatchNorm2d(self.feat_dim) def forward(self, q, k, v, pos=None): if self.pos_en_flag: q_pos_embed = self.pos_en(q, pos) k_pos_embed = self.pos_en(k) q = torch.cat([q, q_pos_embed], dim=1) k = torch.cat([k, k_pos_embed], dim=1) # else: # q_pos_embed = 0 # k_pos_embed = 0 # cross-multi-head attention out = self.attn(q=q, k=k, v=v, attn_type=self.attn_type, P=self.P)[0] # feed forward out2 = self.linear2(self.activation(self.linear1(out))) out = out + out2 out = self.norm(out) return out class Mesh_Sampler(nn.Module): ''' Mesh Up/Down-sampling ''' def __init__(self, type='smpl', level=2, device=torch.device('cuda'), option=None): super().__init__() # downsample SMPL mesh and assign part labels if type == 'smpl': # from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz smpl_mesh_graph = np.load(path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1') A = smpl_mesh_graph['A'] U = smpl_mesh_graph['U'] D = smpl_mesh_graph['D'] # shape: (2,) elif type == 'mano': # from https://github.com/microsoft/MeshGraphormer/blob/main/src/modeling/data/mano_downsampling.npz mano_mesh_graph = np.load(path_config.MANO_DOWNSAMPLING, allow_pickle=True, encoding='latin1') A = mano_mesh_graph['A'] U = mano_mesh_graph['U'] D = mano_mesh_graph['D'] # shape: (2,) # downsampling ptD = [] for lv in range(len(D)): d = scipy.sparse.coo_matrix(D[lv]) i = torch.LongTensor(np.array([d.row, d.col])) v = torch.FloatTensor(d.data) ptD.append(torch.sparse.FloatTensor(i, v, d.shape)) # downsampling mapping from 6890 points to 431 points # ptD[0].to_dense() - Size: [1723, 6890] , [195, 778] # ptD[1].to_dense() - Size: [431, 1723] , [49, 195] if level == 2: Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense()) # 6890 -> 431 elif level == 1: Dmap = ptD[0].to_dense() # self.register_buffer('Dmap', Dmap) # upsampling ptU = [] for lv in range(len(U)): d = scipy.sparse.coo_matrix(U[lv]) i = torch.LongTensor(np.array([d.row, d.col])) v = torch.FloatTensor(d.data) ptU.append(torch.sparse.FloatTensor(i, v, d.shape)) # upsampling mapping from 431 points to 6890 points # ptU[0].to_dense() - Size: [6890, 1723] # ptU[1].to_dense() - Size: [1723, 431] if level == 2: Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense()) # 431 -> 6890 elif level == 1: Umap = ptU[0].to_dense() # self.register_buffer('Umap', Umap) def downsample(self, x): return torch.matmul(self.Dmap.unsqueeze(0), x) # [B, 431, 3] def upsample(self, x): return torch.matmul(self.Umap.unsqueeze(0), x) # [B, 6890, 3] def forward(self, x, mode='downsample'): if mode == 'downsample': return self.downsample(x) elif mode == 'upsample': return self.upsample(x) class MAF_Extractor(nn.Module): ''' Mesh-aligned Feature Extrator As discussed in the paper, we extract mesh-aligned features based on 2D projection of the mesh vertices. The features extrated from spatial feature maps will go through a MLP for dimension reduction. ''' def __init__(self, filter_channels, device=torch.device('cuda'), iwp_cam_mode=True, option=None): super().__init__() self.device = device self.filters = [] self.num_views = 1 self.last_op = nn.ReLU(True) self.iwp_cam_mode = iwp_cam_mode for l in range(0, len(filter_channels) - 1): if 0 != l: self.filters.append( nn.Conv1d( filter_channels[l] + filter_channels[0], filter_channels[l + 1], 1)) else: self.filters.append(nn.Conv1d( filter_channels[l], filter_channels[l + 1], 1)) self.add_module("conv%d" % l, self.filters[l]) # downsample SMPL mesh and assign part labels # from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz smpl_mesh_graph = np.load(path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1') A = smpl_mesh_graph['A'] U = smpl_mesh_graph['U'] D = smpl_mesh_graph['D'] # shape: (2,) # downsampling ptD = [] for level in range(len(D)): d = scipy.sparse.coo_matrix(D[level]) i = torch.LongTensor(np.array([d.row, d.col])) v = torch.FloatTensor(d.data) ptD.append(torch.sparse.FloatTensor(i, v, d.shape)) # downsampling mapping from 6890 points to 431 points # ptD[0].to_dense() - Size: [1723, 6890] # ptD[1].to_dense() - Size: [431. 1723] Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense()) # 6890 -> 431 self.register_buffer('Dmap', Dmap) # upsampling ptU = [] for level in range(len(U)): d = scipy.sparse.coo_matrix(U[level]) i = torch.LongTensor(np.array([d.row, d.col])) v = torch.FloatTensor(d.data) ptU.append(torch.sparse.FloatTensor(i, v, d.shape)) # upsampling mapping from 431 points to 6890 points # ptU[0].to_dense() - Size: [6890, 1723] # ptU[1].to_dense() - Size: [1723, 431] Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense()) # 431 -> 6890 self.register_buffer('Umap', Umap) def reduce_dim(self, feature): ''' Dimension reduction by multi-layer perceptrons :param feature: list of [B, C_s, N] point-wise features before dimension reduction :return: [B, C_p x N] concatantion of point-wise features after dimension reduction ''' y = feature tmpy = feature for i, f in enumerate(self.filters): y = self._modules['conv' + str(i)]( y if i == 0 else torch.cat([y, tmpy], 1) ) if i != len(self.filters) - 1: y = F.leaky_relu(y) if self.num_views > 1 and i == len(self.filters) // 2: y = y.view( -1, self.num_views, y.shape[1], y.shape[2] ).mean(dim=1) tmpy = feature.view( -1, self.num_views, feature.shape[1], feature.shape[2] ).mean(dim=1) y = self.last_op(y) # y = y.view(y.shape[0], -1) return y def sampling(self, points, im_feat=None, z_feat=None, add_att=False, reduce_dim=True): ''' Given 2D points, sample the point-wise features for each point, the dimension of point-wise features will be reduced from C_s to C_p by MLP. Image features should be pre-computed before this call. :param points: [B, N, 2] image coordinates of points :im_feat: [B, C_s, H_s, W_s] spatial feature maps :return: [B, C_p x N] concatantion of point-wise features after dimension reduction ''' # if im_feat is None: # im_feat = self.im_feat batch_size = im_feat.shape[0] point_feat = torch.nn.functional.grid_sample(im_feat, points.unsqueeze(2), align_corners=False)[..., 0] if reduce_dim: mesh_align_feat = self.reduce_dim(point_feat) return mesh_align_feat else: return point_feat def forward(self, p, im_feat, cam=None, add_att=False, reduce_dim=True, **kwargs): ''' Returns mesh-aligned features for the 3D mesh points. Args: p (tensor): [B, N_m, 3] mesh vertices im_feat (tensor): [B, C_s, H_s, W_s] spatial feature maps cam (tensor): [B, 3] camera Return: mesh_align_feat (tensor): [B, C_p x N_m] mesh-aligned features ''' # if cam is None: # cam = self.cam p_proj_2d = projection(p, cam, retain_z=False, iwp_mode=self.iwp_cam_mode) if self.iwp_cam_mode: # Normalize keypoints to [-1,1] p_proj_2d = p_proj_2d / (224. / 2.) else: p_proj_2d = j2d_processing(p_proj_2d, cam['kps_transf']) mesh_align_feat = self.sampling(p_proj_2d, im_feat, add_att=add_att, reduce_dim=reduce_dim) return mesh_align_feat