import torch import numpy as np import logging from copy import deepcopy from .utils.libkdtree import KDTree logger_py = logging.getLogger(__name__) def compute_iou(occ1, occ2): ''' Computes the Intersection over Union (IoU) value for two sets of occupancy values. Args: occ1 (tensor): first set of occupancy values occ2 (tensor): second set of occupancy values ''' occ1 = np.asarray(occ1) occ2 = np.asarray(occ2) # Put all data in second dimension # Also works for 1-dimensional data if occ1.ndim >= 2: occ1 = occ1.reshape(occ1.shape[0], -1) if occ2.ndim >= 2: occ2 = occ2.reshape(occ2.shape[0], -1) # Convert to boolean values occ1 = (occ1 >= 0.5) occ2 = (occ2 >= 0.5) # Compute IOU area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1) area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1) iou = (area_intersect / area_union) return iou def rgb2gray(rgb): ''' rgb of size B x h x w x 3 ''' r, g, b = rgb[:, :, :, 0], rgb[:, :, :, 1], rgb[:, :, :, 2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray def sample_patch_points(batch_size, n_points, patch_size=1, image_resolution=(128, 128), continuous=True): ''' Returns sampled points in the range [-1, 1]. Args: batch_size (int): required batch size n_points (int): number of points to sample patch_size (int): size of patch; if > 1, patches of size patch_size are sampled instead of individual points image_resolution (tuple): image resolution (required for calculating the pixel distances) continuous (bool): whether to sample continuously or only on pixel locations ''' assert(patch_size > 0) # Calculate step size for [-1, 1] that is equivalent to a pixel in # original resolution h_step = 1. / image_resolution[0] w_step = 1. / image_resolution[1] # Get number of patches patch_size_squared = patch_size ** 2 n_patches = int(n_points / patch_size_squared) if continuous: p = torch.rand(batch_size, n_patches, 2) # [0, 1] else: px = torch.randint(0, image_resolution[1], size=( batch_size, n_patches, 1)).float() / (image_resolution[1] - 1) py = torch.randint(0, image_resolution[0], size=( batch_size, n_patches, 1)).float() / (image_resolution[0] - 1) p = torch.cat([px, py], dim=-1) # Scale p to [0, (1 - (patch_size - 1) * step) ] p[:, :, 0] *= 1 - (patch_size - 1) * w_step p[:, :, 1] *= 1 - (patch_size - 1) * h_step # Add points patch_arange = torch.arange(patch_size) x_offset, y_offset = torch.meshgrid(patch_arange, patch_arange) patch_offsets = torch.stack( [x_offset.reshape(-1), y_offset.reshape(-1)], dim=1).view(1, 1, -1, 2).repeat(batch_size, n_patches, 1, 1).float() patch_offsets[:, :, :, 0] *= w_step patch_offsets[:, :, :, 1] *= h_step # Add patch_offsets to points p = p.view(batch_size, n_patches, 1, 2) + patch_offsets # Scale to [-1, x] p = p * 2 - 1 p = p.view(batch_size, -1, 2) amax, amin = p.max(), p.min() assert(amax <= 1. and amin >= -1.) return p def get_proposal_points_in_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, n_steps=40): ''' Returns n_steps equally spaced points inside the unit cube on the rays cast from ray0 with direction ray_direction. This function is used to get the ray marching points {p^ray_j} for a given camera position ray0 and a given ray direction ray_direction which goes from the camera_position to the pixel location. NOTE: The returned values d_proposal are the lengths of the ray: p^ray_j = ray0 + d_proposal_j * ray_direction Args: ray0 (tensor): Start positions of the rays ray_direction (tensor): Directions of rays padding (float): Padding which is applied to the unit cube eps (float): The epsilon value for numerical stability n_steps (int): number of steps ''' batch_size, n_pts, _ = ray0.shape device = ray0.device p_intervals, d_intervals, mask_inside_cube = \ check_ray_intersection_with_unit_cube(ray0, ray_direction, padding, eps) d_proposal = d_intervals[:, :, 0].unsqueeze(-1) + \ torch.linspace(0, 1, steps=n_steps).to(device).view(1, 1, -1) * \ (d_intervals[:, :, 1] - d_intervals[:, :, 0]).unsqueeze(-1) d_proposal = d_proposal.unsqueeze(-1) return d_proposal, mask_inside_cube def check_ray_intersection_with_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, scale=2.0): ''' Checks if rays ray0 + d * ray_direction intersect with unit cube with padding padding. It returns the two intersection points as well as the sorted ray lengths d. Args: ray0 (tensor): Start positions of the rays ray_direction (tensor): Directions of rays padding (float): Padding which is applied to the unit cube eps (float): The epsilon value for numerical stability scale (float): cube size ''' batch_size, n_pts, _ = ray0.shape device = ray0.device # calculate intersections with unit cube (< . , . > is the dot product) # = = 0 # d = - / # Get points on plane p_e p_distance = (scale * 0.5) + padding/2 p_e = torch.ones(batch_size, n_pts, 6).to(device) * p_distance p_e[:, :, 3:] *= -1. # Calculate the intersection points with given formula nominator = p_e - ray0.repeat(1, 1, 2) denominator = ray_direction.repeat(1, 1, 2) d_intersect = nominator / denominator p_intersect = ray0.unsqueeze(-2) + d_intersect.unsqueeze(-1) * \ ray_direction.unsqueeze(-2) # Calculate mask where points intersect unit cube p_mask_inside_cube = ( (p_intersect[:, :, :, 0] <= p_distance + eps) & (p_intersect[:, :, :, 1] <= p_distance + eps) & (p_intersect[:, :, :, 2] <= p_distance + eps) & (p_intersect[:, :, :, 0] >= -(p_distance + eps)) & (p_intersect[:, :, :, 1] >= -(p_distance + eps)) & (p_intersect[:, :, :, 2] >= -(p_distance + eps)) ).cpu() # Correct rays are these which intersect exactly 2 times mask_inside_cube = p_mask_inside_cube.sum(-1) == 2 # Get interval values for p's which are valid p_intervals = p_intersect[mask_inside_cube][p_mask_inside_cube[ mask_inside_cube]].view(-1, 2, 3) p_intervals_batch = torch.zeros(batch_size, n_pts, 2, 3).to(device) p_intervals_batch[mask_inside_cube] = p_intervals # Calculate ray lengths for the interval points d_intervals_batch = torch.zeros(batch_size, n_pts, 2).to(device) norm_ray = torch.norm(ray_direction[mask_inside_cube], dim=-1) d_intervals_batch[mask_inside_cube] = torch.stack([ torch.norm(p_intervals[:, 0] - ray0[mask_inside_cube], dim=-1) / norm_ray, torch.norm(p_intervals[:, 1] - ray0[mask_inside_cube], dim=-1) / norm_ray, ], dim=-1) # Sort the ray lengths d_intervals_batch, indices_sort = d_intervals_batch.sort() p_intervals_batch = p_intervals_batch[ torch.arange(batch_size).view(-1, 1, 1), torch.arange(n_pts).view(1, -1, 1), indices_sort ] return p_intervals_batch, d_intervals_batch, mask_inside_cube def intersect_camera_rays_with_unit_cube( pixels, camera_mat, world_mat, scale_mat, padding=0.1, eps=1e-6, use_ray_length_as_depth=True): ''' Returns the intersection points of ray cast from camera origin to pixel points p on the image plane. The function returns the intersection points as well the depth values and a mask specifying which ray intersects the unit cube. Args: pixels (tensor): Pixel points on image plane (range [-1, 1]) camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix padding (float): Padding which is applied to the unit cube eps (float): The epsilon value for numerical stability ''' batch_size, n_points, _ = pixels.shape pixel_world = image_points_to_world( pixels, camera_mat, world_mat, scale_mat) camera_world = origin_to_world( n_points, camera_mat, world_mat, scale_mat) ray_vector = (pixel_world - camera_world) p_cube, d_cube, mask_cube = check_ray_intersection_with_unit_cube( camera_world, ray_vector, padding=padding, eps=eps) if not use_ray_length_as_depth: p_cam = transform_to_camera_space(p_cube.view( batch_size, -1, 3), camera_mat, world_mat, scale_mat).view( batch_size, n_points, -1, 3) d_cube = p_cam[:, :, :, -1] return p_cube, d_cube, mask_cube def arange_pixels(resolution=(128, 128), batch_size=1, image_range=(-1., 1.), subsample_to=None): ''' Arranges pixels for given resolution in range image_range. The function returns the unscaled pixel locations as integers and the scaled float values. Args: resolution (tuple): image resolution batch_size (int): batch size image_range (tuple): range of output points (default [-1, 1]) subsample_to (int): if integer and > 0, the points are randomly subsampled to this value ''' h, w = resolution n_points = resolution[0] * resolution[1] # Arrange pixel location in scale resolution pixel_locations = torch.meshgrid(torch.arange(0, w), torch.arange(0, h)) pixel_locations = torch.stack( [pixel_locations[0], pixel_locations[1]], dim=-1).long().view(1, -1, 2).repeat(batch_size, 1, 1) pixel_scaled = pixel_locations.clone().float() # Shift and scale points to match image_range scale = (image_range[1] - image_range[0]) loc = scale / 2 pixel_scaled[:, :, 0] = scale * pixel_scaled[:, :, 0] / (w - 1) - loc pixel_scaled[:, :, 1] = scale * pixel_scaled[:, :, 1] / (h - 1) - loc # Subsample points if subsample_to is not None and > 0 if (subsample_to is not None and subsample_to > 0 and subsample_to < n_points): idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to,), replace=False) pixel_scaled = pixel_scaled[:, idx] pixel_locations = pixel_locations[:, idx] return pixel_locations, pixel_scaled def to_pytorch(tensor, return_type=False): ''' Converts input tensor to pytorch. Args: tensor (tensor): Numpy or Pytorch tensor return_type (bool): whether to return input type ''' is_numpy = False if type(tensor) == np.ndarray: tensor = torch.from_numpy(tensor) is_numpy = True tensor = tensor.clone() if return_type: return tensor, is_numpy return tensor def get_mask(tensor): ''' Returns mask of non-illegal values for tensor. Args: tensor (tensor): Numpy or Pytorch tensor ''' tensor, is_numpy = to_pytorch(tensor, True) mask = ((abs(tensor) != np.inf) & (torch.isnan(tensor) == False)) mask = mask.to(torch.bool) if is_numpy: mask = mask.numpy() return mask def transform_mesh(mesh, transform): ''' Transforms a mesh with given transformation. Args: mesh (trimesh mesh): mesh transform (tensor): transformation matrix of size 4 x 4 ''' mesh = deepcopy(mesh) v = np.asarray(mesh.vertices).astype(np.float32) v_transformed = transform_pointcloud(v, transform) mesh.vertices = v_transformed return mesh def transform_pointcloud(pointcloud, transform): ''' Transforms a point cloud with given transformation. Args: pointcloud (tensor): tensor of size N x 3 transform (tensor): transformation of size 4 x 4 ''' assert(transform.shape == (4, 4) and pointcloud.shape[-1] == 3) pcl, is_numpy = to_pytorch(pointcloud, True) transform = to_pytorch(transform) # Transform point cloud to homogen coordinate system pcl_hom = torch.cat([ pcl, torch.ones(pcl.shape[0], 1) ], dim=-1).transpose(1, 0) # Apply transformation to point cloud pcl_hom_transformed = transform @ pcl_hom # Transform back to 3D coordinates pcl_out = pcl_hom_transformed[:3].transpose(1, 0) if is_numpy: pcl_out = pcl_out.numpy() return pcl_out def transform_points_batch(p, transform): ''' Transform points tensor with given transform. Args: p (tensor): tensor of size B x N x 3 transform (tensor): transformation of size B x 4 x 4 ''' device = p.device assert(transform.shape[1:] == (4, 4) and p.shape[-1] == 3 and p.shape[0] == transform.shape[0]) # Transform points to homogen coordinates pcl_hom = torch.cat([ p, torch.ones(p.shape[0], p.shape[1], 1).to(device) ], dim=-1).transpose(2, 1) # Apply transformation pcl_hom_transformed = transform @ pcl_hom # Transform back to 3D coordinates pcl_out = pcl_hom_transformed[:, :3].transpose(2, 1) return pcl_out def get_tensor_values(tensor, p, grid_sample=True, mode='nearest', with_mask=False, squeeze_channel_dim=False): ''' Returns values from tensor at given location p. Args: tensor (tensor): tensor of size B x C x H x W p (tensor): position values scaled between [-1, 1] and of size B x N x 2 grid_sample (boolean): whether to use grid sampling mode (string): what mode to perform grid sampling in with_mask (bool): whether to return the mask for invalid values squeeze_channel_dim (bool): whether to squeeze the channel dimension (only applicable to 1D data) ''' p = to_pytorch(p) tensor, is_numpy = to_pytorch(tensor, True) batch_size, _, h, w = tensor.shape if grid_sample: p = p.unsqueeze(1) values = torch.nn.functional.grid_sample(tensor, p, mode=mode) values = values.squeeze(2) values = values.permute(0, 2, 1) else: p[:, :, 0] = (p[:, :, 0] + 1) * (w) / 2 p[:, :, 1] = (p[:, :, 1] + 1) * (h) / 2 p = p.long() values = tensor[torch.arange(batch_size).unsqueeze(-1), :, p[:, :, 1], p[:, :, 0]] if with_mask: mask = get_mask(values) if squeeze_channel_dim: mask = mask.squeeze(-1) if is_numpy: mask = mask.numpy() if squeeze_channel_dim: values = values.squeeze(-1) if is_numpy: values = values.numpy() if with_mask: return values, mask return values def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat, invert=True): ''' Transforms pixel positions p with given depth value d to world coordinates. Args: pixels (tensor): pixel tensor of size B x N x 2 depth (tensor): depth tensor of size B x N x 1 camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix invert (bool): whether to invert matrices (default: true) ''' assert(pixels.shape[-1] == 2) # Convert to pytorch pixels, is_numpy = to_pytorch(pixels, True) depth = to_pytorch(depth) camera_mat = to_pytorch(camera_mat) world_mat = to_pytorch(world_mat) scale_mat = to_pytorch(scale_mat) # Invert camera matrices if invert: camera_mat = torch.inverse(camera_mat) world_mat = torch.inverse(world_mat) scale_mat = torch.inverse(scale_mat) # Transform pixels to homogen coordinates pixels = pixels.permute(0, 2, 1) pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1) # Project pixels into camera space pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1) # Transform pixels to world space p_world = scale_mat @ world_mat @ camera_mat @ pixels # Transform p_world back to 3D coordinates p_world = p_world[:, :3].permute(0, 2, 1) if is_numpy: p_world = p_world.numpy() return p_world def transform_to_camera_space(p_world, camera_mat, world_mat, scale_mat): ''' Transforms world points to camera space. Args: p_world (tensor): world points tensor of size B x N x 3 camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix ''' batch_size, n_p, _ = p_world.shape device = p_world.device # Transform world points to homogen coordinates p_world = torch.cat([p_world, torch.ones( batch_size, n_p, 1).to(device)], dim=-1).permute(0, 2, 1) # Apply matrices to transform p_world to camera space p_cam = camera_mat @ world_mat @ scale_mat @ p_world # Transform points back to 3D coordinates p_cam = p_cam[:, :3].permute(0, 2, 1) return p_cam def origin_to_world(n_points, camera_mat, world_mat, scale_mat, invert=True): ''' Transforms origin (camera location) to world coordinates. Args: n_points (int): how often the transformed origin is repeated in the form (batch_size, n_points, 3) camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix invert (bool): whether to invert the matrices (default: true) ''' batch_size = camera_mat.shape[0] device = camera_mat.device # Create origin in homogen coordinates p = torch.zeros(batch_size, 4, n_points).to(device) p[:, -1] = 1. # Invert matrices if invert: camera_mat = torch.inverse(camera_mat) world_mat = torch.inverse(world_mat) scale_mat = torch.inverse(scale_mat) # Apply transformation p_world = scale_mat @ world_mat @ camera_mat @ p # Transform points back to 3D coordinates p_world = p_world[:, :3].permute(0, 2, 1) return p_world def image_points_to_world(image_points, camera_mat, world_mat, scale_mat, invert=True): ''' Transforms points on image plane to world coordinates. In contrast to transform_to_world, no depth value is needed as points on the image plane have a fixed depth of 1. Args: image_points (tensor): image points tensor of size B x N x 2 camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix invert (bool): whether to invert matrices (default: true) ''' batch_size, n_pts, dim = image_points.shape assert(dim == 2) device = image_points.device d_image = torch.ones(batch_size, n_pts, 1).to(device) return transform_to_world(image_points, d_image, camera_mat, world_mat, scale_mat, invert=invert) def check_weights(params): ''' Checks weights for illegal values. Args: params (tensor): parameter tensor ''' for k, v in params.items(): if torch.isnan(v).any(): logger_py.warn('NaN Values detected in model weight %s.' % k) def check_tensor(tensor, tensorname='', input_tensor=None): ''' Checks tensor for illegal values. Args: tensor (tensor): tensor tensorname (string): name of tensor input_tensor (tensor): previous input ''' if torch.isnan(tensor).any(): logger_py.warn('Tensor %s contains nan values.' % tensorname) if input_tensor is not None: logger_py.warn(f'Input was: {input_tensor}') def get_prob_from_logits(logits): ''' Returns probabilities for logits Args: logits (tensor): logits ''' odds = np.exp(logits) probs = odds / (1 + odds) return probs def get_logits_from_prob(probs, eps=1e-4): ''' Returns logits for probabilities. Args: probs (tensor): probability tensor eps (float): epsilon value for numerical stability ''' probs = np.clip(probs, a_min=eps, a_max=1-eps) logits = np.log(probs / (1 - probs)) return logits def chamfer_distance(points1, points2, use_kdtree=True, give_id=False): ''' Returns the chamfer distance for the sets of points. Args: points1 (numpy array): first point set points2 (numpy array): second point set use_kdtree (bool): whether to use a kdtree give_id (bool): whether to return the IDs of nearest points ''' if use_kdtree: return chamfer_distance_kdtree(points1, points2, give_id=give_id) else: return chamfer_distance_naive(points1, points2) def chamfer_distance_naive(points1, points2): ''' Naive implementation of the Chamfer distance. Args: points1 (numpy array): first point set points2 (numpy array): second point set ''' assert(points1.size() == points2.size()) batch_size, T, _ = points1.size() points1 = points1.view(batch_size, T, 1, 3) points2 = points2.view(batch_size, 1, T, 3) distances = (points1 - points2).pow(2).sum(-1) chamfer1 = distances.min(dim=1)[0].mean(dim=1) chamfer2 = distances.min(dim=2)[0].mean(dim=1) chamfer = chamfer1 + chamfer2 return chamfer def chamfer_distance_kdtree(points1, points2, give_id=False): ''' KD-tree based implementation of the Chamfer distance. Args: points1 (numpy array): first point set points2 (numpy array): second point set give_id (bool): whether to return the IDs of the nearest points ''' # Points have size batch_size x T x 3 batch_size = points1.size(0) # First convert points to numpy points1_np = points1.detach().cpu().numpy() points2_np = points2.detach().cpu().numpy() # Get list of nearest neighbors indices idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np) idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device) # Expands it as batch_size x 1 x 3 idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1) # Get list of nearest neighbors indices idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np) idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device) # Expands it as batch_size x T x 3 idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2) # Compute nearest neighbors in points2 to points in points1 # points_12[i, j, k] = points2[i, idx_nn_12_expand[i, j, k], k] points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand) # Compute nearest neighbors in points1 to points in points2 # points_21[i, j, k] = points2[i, idx_nn_21_expand[i, j, k], k] points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand) # Compute chamfer distance chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1) chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1) # Take sum chamfer = chamfer1 + chamfer2 # If required, also return nearest neighbors if give_id: return chamfer1, chamfer2, idx_nn_12, idx_nn_21 return chamfer def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1): ''' Returns the nearest neighbors for point sets batchwise. Args: points_src (numpy array): source points points_tgt (numpy array): target points k (int): number of nearest neighbors to return ''' indices = [] distances = [] for (p1, p2) in zip(points_src, points_tgt): kdtree = KDTree(p2) dist, idx = kdtree.query(p1, k=k) indices.append(idx) distances.append(dist) return indices, distances def normalize_imagenet(x): ''' Normalize input images according to ImageNet standards. Args: x (tensor): input images ''' x = x.clone() x[:, 0] = (x[:, 0] - 0.485) / 0.229 x[:, 1] = (x[:, 1] - 0.456) / 0.224 x[:, 2] = (x[:, 2] - 0.406) / 0.225 return x def make_3d_grid(bb_min, bb_max, shape): ''' Makes a 3D grid. Args: bb_min (tuple): bounding box minimum bb_max (tuple): bounding box maximum shape (tuple): output shape ''' size = shape[0] * shape[1] * shape[2] pxs = torch.linspace(bb_min[0], bb_max[0], shape[0]) pys = torch.linspace(bb_min[1], bb_max[1], shape[1]) pzs = torch.linspace(bb_min[2], bb_max[2], shape[2]) pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size) pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size) pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size) p = torch.stack([pxs, pys, pzs], dim=1) return p def get_occupancy_loss_points(pixels, camera_mat, world_mat, scale_mat, depth_image=None, use_cube_intersection=True, occupancy_random_normal=False, depth_range=[0, 2.4]): ''' Returns 3D points for occupancy loss. Args: pixels (tensor): sampled pixels in range [-1, 1] camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix depth_image tensor): if not None, these depth values are used for initialization (e.g. depth or visual hull depth) use_cube_intersection (bool): whether to check unit cube intersection occupancy_random_normal (bool): whether to sample from a Normal distribution instead of a uniform one depth_range (float): depth range; important when no cube intersection is used ''' device = pixels.device batch_size, n_points, _ = pixels.shape if use_cube_intersection: _, d_cube_intersection, mask_cube = \ intersect_camera_rays_with_unit_cube( pixels, camera_mat, world_mat, scale_mat, padding=0., use_ray_length_as_depth=False) d_cube = d_cube_intersection[mask_cube] d_occupancy = torch.rand(batch_size, n_points).to(device) * depth_range[1] if use_cube_intersection: d_occupancy[mask_cube] = d_cube[:, 0] + \ torch.rand(d_cube.shape[0]).to( device) * (d_cube[:, 1] - d_cube[:, 0]) if occupancy_random_normal: d_occupancy = torch.randn(batch_size, n_points).to(device) \ * (depth_range[1] / 8) + depth_range[1] / 2 if use_cube_intersection: mean_cube = d_cube.sum(-1) / 2 std_cube = (d_cube[:, 1] - d_cube[:, 0]) / 8 d_occupancy[mask_cube] = mean_cube + \ torch.randn(mean_cube.shape[0]).to(device) * std_cube if depth_image is not None: depth_gt, mask_gt_depth = get_tensor_values( depth_image, pixels, squeeze_channel_dim=True, with_mask=True) d_occupancy[mask_gt_depth] = depth_gt[mask_gt_depth] p_occupancy = transform_to_world(pixels, d_occupancy.unsqueeze(-1), camera_mat, world_mat, scale_mat) return p_occupancy def get_freespace_loss_points(pixels, camera_mat, world_mat, scale_mat, use_cube_intersection=True, depth_range=[0, 2.4]): ''' Returns 3D points for freespace loss. Args: pixels (tensor): sampled pixels in range [-1, 1] camera_mat (tensor): camera matrix world_mat (tensor): world matrix scale_mat (tensor): scale matrix use_cube_intersection (bool): whether to check unit cube intersection depth_range (float): depth range; important when no cube intersection is used ''' device = pixels.device batch_size, n_points, _ = pixels.shape d_freespace = torch.rand(batch_size, n_points).to(device) * \ depth_range[1] if use_cube_intersection: _, d_cube_intersection, mask_cube = \ intersect_camera_rays_with_unit_cube( pixels, camera_mat, world_mat, scale_mat, use_ray_length_as_depth=False) d_cube = d_cube_intersection[mask_cube] d_freespace[mask_cube] = d_cube[:, 0] + \ torch.rand(d_cube.shape[0]).to( device) * (d_cube[:, 1] - d_cube[:, 0]) p_freespace = transform_to_world( pixels, d_freespace.unsqueeze(-1), camera_mat, world_mat, scale_mat) return p_freespace def normalize_tensor(tensor, min_norm=1e-5, feat_dim=-1): ''' Normalizes the tensor. Args: tensor (tensor): tensor min_norm (float): minimum norm for numerical stability feat_dim (int): feature dimension in tensor (default: -1) ''' norm_tensor = torch.clamp(torch.norm(tensor, dim=feat_dim, keepdim=True), min=min_norm) normed_tensor = tensor / norm_tensor return normed_tensor