# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import copy import cv2 from scipy.io import loadmat import scipy.spatial.distance import os class DensePoseMethods: def __init__(self): # ALP_UV = loadmat(os.path.join('./data/UV_data', 'UV_Processed.mat')) self.FaceIndices = np.array(ALP_UV['All_FaceIndices']).squeeze() self.FacesDensePose = ALP_UV['All_Faces'] - 1 self.U_norm = ALP_UV['All_U_norm'].squeeze() self.V_norm = ALP_UV['All_V_norm'].squeeze() self.All_vertices = ALP_UV['All_vertices'][0] ## Info to compute symmetries. self.SemanticMaskSymmetries = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14] self.Index_Symmetry_List = [1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23]; UV_symmetry_filename = os.path.join('./data/UV_data', 'UV_symmetry_transforms.mat') self.UV_symmetry_transformations = loadmat(UV_symmetry_filename) def get_symmetric_densepose(self, I, U, V, x, y, Mask): ### This is a function to get the mirror symmetric UV labels. Labels_sym = np.zeros(I.shape) U_sym = np.zeros(U.shape) V_sym = np.zeros(V.shape) ### for i in (range(24)): if i + 1 in I: Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i] jj = np.where(I == (i + 1)) ### U_loc = (U[jj] * 255).astype(np.int64) V_loc = (V[jj] * 255).astype(np.int64) ### V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc] U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc] ## Mask_flip = np.fliplr(Mask) Mask_flipped = np.zeros(Mask.shape) # for i in (range(14)): Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1] # [y_max, x_max] = Mask_flip.shape y_sym = y x_sym = x_max - x # return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped def barycentric_coordinates_exists(self, P0, P1, P2, P): u = P1 - P0 v = P2 - P0 w = P - P0 # vCrossW = np.cross(v, w) vCrossU = np.cross(v, u) if (np.dot(vCrossW, vCrossU) < 0): return False; # uCrossW = np.cross(u, w) uCrossV = np.cross(u, v) # if (np.dot(uCrossW, uCrossV) < 0): return False; # denom = np.sqrt((uCrossV ** 2).sum()) r = np.sqrt((vCrossW ** 2).sum()) / denom t = np.sqrt((uCrossW ** 2).sum()) / denom # return ((r <= 1) & (t <= 1) & (r + t <= 1)) def barycentric_coordinates(self, P0, P1, P2, P): u = P1 - P0 v = P2 - P0 w = P - P0 # vCrossW = np.cross(v, w) vCrossU = np.cross(v, u) # uCrossW = np.cross(u, w) uCrossV = np.cross(u, v) # denom = np.sqrt((uCrossV ** 2).sum()) r = np.sqrt((vCrossW ** 2).sum()) / denom t = np.sqrt((uCrossW ** 2).sum()) / denom # return (1 - (r + t), r, t) def IUV2FBC(self, I_point, U_point, V_point): P = [U_point, V_point, 0] FaceIndicesNow = np.where(self.FaceIndices == I_point) FacesNow = self.FacesDensePose[FaceIndicesNow] # P_0 = np.vstack((self.U_norm[FacesNow][:, 0], self.V_norm[FacesNow][:, 0], np.zeros(self.U_norm[FacesNow][:, 0].shape))).transpose() P_1 = np.vstack((self.U_norm[FacesNow][:, 1], self.V_norm[FacesNow][:, 1], np.zeros(self.U_norm[FacesNow][:, 1].shape))).transpose() P_2 = np.vstack((self.U_norm[FacesNow][:, 2], self.V_norm[FacesNow][:, 2], np.zeros(self.U_norm[FacesNow][:, 2].shape))).transpose() # for i, [P0, P1, P2] in enumerate(zip(P_0, P_1, P_2)): if (self.barycentric_coordinates_exists(P0, P1, P2, P)): [bc1, bc2, bc3] = self.barycentric_coordinates(P0, P1, P2, P) return (FaceIndicesNow[0][i], bc1, bc2, bc3) # # If the found UV is not inside any faces, select the vertex that is closest! # D1 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], P_0[:, 0:2]).squeeze() D2 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], P_1[:, 0:2]).squeeze() D3 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], P_2[:, 0:2]).squeeze() # minD1 = D1.min() minD2 = D2.min() minD3 = D3.min() # if ((minD1 < minD2) & (minD1 < minD3)): return (FaceIndicesNow[0][np.argmin(D1)], 1., 0., 0.) elif ((minD2 < minD1) & (minD2 < minD3)): return (FaceIndicesNow[0][np.argmin(D2)], 0., 1., 0.) else: return (FaceIndicesNow[0][np.argmin(D3)], 0., 0., 1.) def FBC2PointOnSurface(self, FaceIndex, bc1, bc2, bc3, Vertices): ## Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]] - 1 ## p = Vertices[Vert_indices[0], :] * bc1 + \ Vertices[Vert_indices[1], :] * bc2 + \ Vertices[Vert_indices[2], :] * bc3 ## return (p)