import torch import torch.nn as nn import torch.nn.functional as F def iuvmap_clean(U_uv, V_uv, Index_UV, AnnIndex=None): Index_UV_max = torch.argmax(Index_UV, dim=1).float() recon_Index_UV = [] for i in range(Index_UV.size(1)): if i == 0: recon_Index_UV_i = torch.min(F.threshold(Index_UV_max + 1, 0.5, 0), -F.threshold(-Index_UV_max - 1, -1.5, 0)) else: recon_Index_UV_i = torch.min(F.threshold(Index_UV_max, i - 0.5, 0), -F.threshold(-Index_UV_max, -i - 0.5, 0)) / float(i) recon_Index_UV.append(recon_Index_UV_i) recon_Index_UV = torch.stack(recon_Index_UV, dim=1) if AnnIndex is None: recon_Ann_Index = None else: AnnIndex_max = torch.argmax(AnnIndex, dim=1).float() recon_Ann_Index = [] for i in range(AnnIndex.size(1)): if i == 0: recon_Ann_Index_i = torch.min(F.threshold(AnnIndex_max + 1, 0.5, 0), -F.threshold(-AnnIndex_max - 1, -1.5, 0)) else: recon_Ann_Index_i = torch.min(F.threshold(AnnIndex_max, i - 0.5, 0), -F.threshold(-AnnIndex_max, -i - 0.5, 0)) / float(i) recon_Ann_Index.append(recon_Ann_Index_i) recon_Ann_Index = torch.stack(recon_Ann_Index, dim=1) recon_U = recon_Index_UV * U_uv recon_V = recon_Index_UV * V_uv return recon_U, recon_V, recon_Index_UV, recon_Ann_Index def iuv_map2img(U_uv, V_uv, Index_UV, AnnIndex=None, uv_rois=None, ind_mapping=None, n_part=24): device_id = U_uv.get_device() batch_size = U_uv.size(0) K = U_uv.size(1) heatmap_size = U_uv.size(2) Index_UV_max = torch.argmax(Index_UV, dim=1) if AnnIndex is None: Index_UV_max = Index_UV_max.to(torch.int64) else: AnnIndex_max = torch.argmax(AnnIndex, dim=1) Index_UV_max = Index_UV_max * (AnnIndex_max > 0).to(torch.int64) outputs = [] for batch_id in range(batch_size): output = torch.zeros([3, U_uv.size(2), U_uv.size(3)], dtype=torch.float32).cuda(device_id) output[0] = Index_UV_max[batch_id].to(torch.float32) if ind_mapping is None: output[0] /= float(K - 1) else: for ind in range(len(ind_mapping)): output[0][output[0] == ind] = ind_mapping[ind] * (1. / n_part) for part_id in range(0, K): CurrentU = U_uv[batch_id, part_id] CurrentV = V_uv[batch_id, part_id] output[1, Index_UV_max[batch_id] == part_id] = CurrentU[Index_UV_max[batch_id] == part_id] output[2, Index_UV_max[batch_id] == part_id] = CurrentV[Index_UV_max[batch_id] == part_id] if uv_rois is None: outputs.append(output.unsqueeze(0)) else: roi_fg = uv_rois[batch_id][1:] # x1 = roi_fg[0] # x2 = roi_fg[2] # y1 = roi_fg[1] # y2 = roi_fg[3] w = roi_fg[2] - roi_fg[0] h = roi_fg[3] - roi_fg[1] aspect_ratio = float(w) / h if aspect_ratio < 1: new_size = [heatmap_size, max(int(heatmap_size * aspect_ratio), 1)] output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest') paddingleft = int(0.5 * (heatmap_size - new_size[1])) output = F.pad(output, pad=(paddingleft, heatmap_size - new_size[1] - paddingleft, 0, 0)) else: new_size = [max(int(heatmap_size / aspect_ratio), 1), heatmap_size] output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest') paddingtop = int(0.5 * (heatmap_size - new_size[0])) output = F.pad(output, pad=(0, 0, paddingtop, heatmap_size - new_size[0] - paddingtop)) outputs.append(output) return torch.cat(outputs, dim=0) def iuv_img2map(uvimages, uv_rois=None, new_size=None, n_part=24): device_id = uvimages.get_device() batch_size = uvimages.size(0) uvimg_size = uvimages.size(-1) Index2mask = [[0], [1, 2], [3], [4], [5], [6], [7, 9], [8, 10], [11, 13], [12, 14], [15, 17], [16, 18], [19, 21], [20, 22], [23, 24]] part_ind = torch.round(uvimages[:, 0, :, :] * n_part) part_u = uvimages[:, 1, :, :] part_v = uvimages[:, 2, :, :] recon_U = [] recon_V = [] recon_Index_UV = [] recon_Ann_Index = [] for i in range(n_part+1): if i == 0: recon_Index_UV_i = torch.min(F.threshold(part_ind + 1, 0.5, 0), -F.threshold(-part_ind - 1, -1.5, 0)) else: recon_Index_UV_i = torch.min(F.threshold(part_ind, i - 0.5, 0), -F.threshold(-part_ind, -i - 0.5, 0)) / float(i) recon_U_i = recon_Index_UV_i * part_u recon_V_i = recon_Index_UV_i * part_v recon_Index_UV.append(recon_Index_UV_i) recon_U.append(recon_U_i) recon_V.append(recon_V_i) for i in range(len(Index2mask)): if len(Index2mask[i]) == 1: recon_Ann_Index_i = recon_Index_UV[Index2mask[i][0]] elif len(Index2mask[i]) == 2: p_ind0 = Index2mask[i][0] p_ind1 = Index2mask[i][1] # recon_Ann_Index[:, i, :, :] = torch.where(recon_Index_UV[:, p_ind0, :, :] > 0.5, recon_Index_UV[:, p_ind0, :, :], recon_Index_UV[:, p_ind1, :, :]) # recon_Ann_Index[:, i, :, :] = torch.eq(part_ind, p_ind0) | torch.eq(part_ind, p_ind1) recon_Ann_Index_i = recon_Index_UV[p_ind0] + recon_Index_UV[p_ind1] recon_Ann_Index.append(recon_Ann_Index_i) recon_U = torch.stack(recon_U, dim=1) recon_V = torch.stack(recon_V, dim=1) recon_Index_UV = torch.stack(recon_Index_UV, dim=1) recon_Ann_Index = torch.stack(recon_Ann_Index, dim=1) if uv_rois is None: return recon_U, recon_V, recon_Index_UV, recon_Ann_Index recon_U_roi = [] recon_V_roi = [] recon_Index_UV_roi = [] recon_Ann_Index_roi = [] if new_size is None: M = uvimg_size else: M = new_size for i in range(batch_size): roi_fg = uv_rois[i][1:] # x1 = roi_fg[0] # x2 = roi_fg[2] # y1 = roi_fg[1] # y2 = roi_fg[3] w = roi_fg[2] - roi_fg[0] h = roi_fg[3] - roi_fg[1] aspect_ratio = float(w) / h if aspect_ratio < 1: w_size = max(int(uvimg_size * aspect_ratio), 1) w_margin = int((uvimg_size - w_size) / 2) recon_U_roi_i = recon_U[i, :, :, w_margin:w_margin + w_size] recon_V_roi_i = recon_V[i, :, :, w_margin:w_margin + w_size] recon_Index_UV_roi_i = recon_Index_UV[i, :, :, w_margin:w_margin + w_size] recon_Ann_Index_roi_i = recon_Ann_Index[i, :, :, w_margin:w_margin + w_size] else: h_size = max(int(uvimg_size / aspect_ratio), 1) h_margin = int((uvimg_size - h_size) / 2) recon_U_roi_i = recon_U[i, :, h_margin:h_margin + h_size, :] recon_V_roi_i = recon_V[i, :, h_margin:h_margin + h_size, :] recon_Index_UV_roi_i = recon_Index_UV[i, :, h_margin:h_margin + h_size, :] recon_Ann_Index_roi_i = recon_Ann_Index[i, :, h_margin:h_margin + h_size, :] recon_U_roi_i = F.interpolate(recon_U_roi_i.unsqueeze(0), size=(M, M), mode='nearest') recon_V_roi_i = F.interpolate(recon_V_roi_i.unsqueeze(0), size=(M, M), mode='nearest') recon_Index_UV_roi_i = F.interpolate(recon_Index_UV_roi_i.unsqueeze(0), size=(M, M), mode='nearest') recon_Ann_Index_roi_i = F.interpolate(recon_Ann_Index_roi_i.unsqueeze(0), size=(M, M), mode='nearest') recon_U_roi.append(recon_U_roi_i) recon_V_roi.append(recon_V_roi_i) recon_Index_UV_roi.append(recon_Index_UV_roi_i) recon_Ann_Index_roi.append(recon_Ann_Index_roi_i) recon_U_roi = torch.cat(recon_U_roi, dim=0) recon_V_roi = torch.cat(recon_V_roi, dim=0) recon_Index_UV_roi = torch.cat(recon_Index_UV_roi, dim=0) recon_Ann_Index_roi = torch.cat(recon_Ann_Index_roi, dim=0) return recon_U_roi, recon_V_roi, recon_Index_UV_roi, recon_Ann_Index_roi def seg_img2map(segimages, uv_rois=None, new_size=None, n_part=24): device_id = segimages.get_device() batch_size = segimages.size(0) uvimg_size = segimages.size(-1) part_ind = torch.round(segimages[:, 0, :, :] * n_part) recon_Index_UV = [] for i in range(n_part+1): if i == 0: recon_Index_UV_i = torch.min(F.threshold(part_ind + 1, 0.5, 0), -F.threshold(-part_ind - 1, -1.5, 0)) else: recon_Index_UV_i = torch.min(F.threshold(part_ind, i - 0.5, 0), -F.threshold(-part_ind, -i - 0.5, 0)) / float(i) recon_Index_UV.append(recon_Index_UV_i) recon_Index_UV = torch.stack(recon_Index_UV, dim=1) if uv_rois is None: return None, None, recon_Index_UV, None recon_Index_UV_roi = [] if new_size is None: M = uvimg_size else: M = new_size for i in range(batch_size): roi_fg = uv_rois[i][1:] # x1 = roi_fg[0] # x2 = roi_fg[2] # y1 = roi_fg[1] # y2 = roi_fg[3] w = roi_fg[2] - roi_fg[0] h = roi_fg[3] - roi_fg[1] aspect_ratio = float(w) / h if aspect_ratio < 1: w_size = max(int(uvimg_size * aspect_ratio), 1) w_margin = int((uvimg_size - w_size) / 2) recon_Index_UV_roi_i = recon_Index_UV[i, :, :, w_margin:w_margin + w_size] else: h_size = max(int(uvimg_size / aspect_ratio), 1) h_margin = int((uvimg_size - h_size) / 2) recon_Index_UV_roi_i = recon_Index_UV[i, :, h_margin:h_margin + h_size, :] recon_Index_UV_roi_i = F.interpolate(recon_Index_UV_roi_i.unsqueeze(0), size=(M, M), mode='nearest') recon_Index_UV_roi.append(recon_Index_UV_roi_i) recon_Index_UV_roi = torch.cat(recon_Index_UV_roi, dim=0) return None, None, recon_Index_UV_roi, None