import torch import numpy as np import neural_renderer as nr from core import path_config from models import SMPL class PartRenderer(): """Renderer used to render segmentation masks and part segmentations. Internally it uses the Neural 3D Mesh Renderer """ def __init__(self, focal_length=5000., render_res=224): # Parameters for rendering self.focal_length = focal_length self.render_res = render_res # We use Neural 3D mesh renderer for rendering masks and part segmentations self.neural_renderer = nr.Renderer(dist_coeffs=None, orig_size=self.render_res, image_size=render_res, light_intensity_ambient=1, light_intensity_directional=0, anti_aliasing=False) self.faces = torch.from_numpy(SMPL(path_config.SMPL_MODEL_DIR).faces.astype(np.int32)).cuda() textures = np.load(path_config.VERTEX_TEXTURE_FILE) self.textures = torch.from_numpy(textures).cuda().float() self.cube_parts = torch.cuda.FloatTensor(np.load(path_config.CUBE_PARTS_FILE)) def get_parts(self, parts, mask): """Process renderer part image to get body part indices.""" bn,c,h,w = parts.shape mask = mask.view(-1,1) parts_index = torch.floor(100*parts.permute(0,2,3,1).contiguous().view(-1,3)).long() parts = self.cube_parts[parts_index[:,0], parts_index[:,1], parts_index[:,2], None] parts *= mask parts = parts.view(bn,h,w).long() return parts def __call__(self, vertices, camera): """Wrapper function for rendering process.""" # Estimate camera parameters given a fixed focal length cam_t = torch.stack([camera[:,1], camera[:,2], 2*self.focal_length/(self.render_res * camera[:,0] +1e-9)],dim=-1) batch_size = vertices.shape[0] K = torch.eye(3, device=vertices.device) K[0,0] = self.focal_length K[1,1] = self.focal_length K[2,2] = 1 K[0,2] = self.render_res / 2. K[1,2] = self.render_res / 2. K = K[None, :, :].expand(batch_size, -1, -1) R = torch.eye(3, device=vertices.device)[None, :, :].expand(batch_size, -1, -1) faces = self.faces[None, :, :].expand(batch_size, -1, -1) parts, _, mask = self.neural_renderer(vertices, faces, textures=self.textures.expand(batch_size, -1, -1, -1, -1, -1), K=K, R=R, t=cam_t.unsqueeze(1)) parts = self.get_parts(parts, mask) return mask, parts