Spaces:
Runtime error
Runtime error
File size: 25,485 Bytes
2d5f249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
from lib.common.seg3d_lossless import Seg3dLossless
from lib.dataset.Evaluator import Evaluator
from lib.net import HGPIFuNet
from lib.common.train_util import *
from lib.common.render import Render
from lib.dataset.mesh_util import SMPLX, update_mesh_shape_prior_losses, get_visibility
import warnings
import logging
import torch
import lib.smplx as smplx
import numpy as np
from torch import nn
import os.path as osp
from skimage.transform import resize
import pytorch_lightning as pl
from huggingface_hub import cached_download
torch.backends.cudnn.benchmark = True
logging.getLogger("lightning").setLevel(logging.ERROR)
warnings.filterwarnings("ignore")
class ICON(pl.LightningModule):
def __init__(self, cfg):
super(ICON, self).__init__()
self.cfg = cfg
self.batch_size = self.cfg.batch_size
self.lr_G = self.cfg.lr_G
self.use_sdf = cfg.sdf
self.prior_type = cfg.net.prior_type
self.mcube_res = cfg.mcube_res
self.clean_mesh_flag = cfg.clean_mesh
self.netG = HGPIFuNet(
self.cfg,
self.cfg.projection_mode,
error_term=nn.SmoothL1Loss() if self.use_sdf else nn.MSELoss(),
)
# TODO: replace the renderer from opengl to pytorch3d
self.evaluator = Evaluator(
device=torch.device(f"cuda:{self.cfg.gpus[0]}"))
self.resolutions = (
np.logspace(
start=5,
stop=np.log2(self.mcube_res),
base=2,
num=int(np.log2(self.mcube_res) - 4),
endpoint=True,
)
+ 1.0
)
self.resolutions = self.resolutions.astype(np.int16).tolist()
self.icon_keys = ["smpl_verts", "smpl_faces", "smpl_vis", "smpl_cmap"]
self.pamir_keys = ["voxel_verts",
"voxel_faces", "pad_v_num", "pad_f_num"]
self.reconEngine = Seg3dLossless(
query_func=query_func,
b_min=[[-1.0, 1.0, -1.0]],
b_max=[[1.0, -1.0, 1.0]],
resolutions=self.resolutions,
align_corners=True,
balance_value=0.50,
device=torch.device(f"cuda:{self.cfg.test_gpus[0]}"),
visualize=False,
debug=False,
use_cuda_impl=False,
faster=True,
)
self.render = Render(
size=512, device=torch.device(f"cuda:{self.cfg.test_gpus[0]}")
)
self.smpl_data = SMPLX()
self.get_smpl_model = lambda smpl_type, gender, age, v_template: smplx.create(
self.smpl_data.model_dir,
kid_template_path=cached_download(osp.join(self.smpl_data.model_dir,
f"{smpl_type}/{smpl_type}_kid_template.npy"), use_auth_token=os.environ['ICON']),
model_type=smpl_type,
gender=gender,
age=age,
v_template=v_template,
use_face_contour=False,
ext="pkl",
)
self.in_geo = [item[0] for item in cfg.net.in_geo]
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
self.in_total = self.in_geo + self.in_nml
self.smpl_dim = cfg.net.smpl_dim
self.export_dir = None
self.result_eval = {}
def get_progress_bar_dict(self):
tqdm_dict = super().get_progress_bar_dict()
if "v_num" in tqdm_dict:
del tqdm_dict["v_num"]
return tqdm_dict
# Training related
def configure_optimizers(self):
# set optimizer
weight_decay = self.cfg.weight_decay
momentum = self.cfg.momentum
optim_params_G = [
{"params": self.netG.if_regressor.parameters(), "lr": self.lr_G}
]
if self.cfg.net.use_filter:
optim_params_G.append(
{"params": self.netG.F_filter.parameters(), "lr": self.lr_G}
)
if self.cfg.net.prior_type == "pamir":
optim_params_G.append(
{"params": self.netG.ve.parameters(), "lr": self.lr_G}
)
if self.cfg.optim == "Adadelta":
optimizer_G = torch.optim.Adadelta(
optim_params_G, lr=self.lr_G, weight_decay=weight_decay
)
elif self.cfg.optim == "Adam":
optimizer_G = torch.optim.Adam(
optim_params_G, lr=self.lr_G, weight_decay=weight_decay
)
elif self.cfg.optim == "RMSprop":
optimizer_G = torch.optim.RMSprop(
optim_params_G,
lr=self.lr_G,
weight_decay=weight_decay,
momentum=momentum,
)
else:
raise NotImplementedError
# set scheduler
scheduler_G = torch.optim.lr_scheduler.MultiStepLR(
optimizer_G, milestones=self.cfg.schedule, gamma=self.cfg.gamma
)
return [optimizer_G], [scheduler_G]
def training_step(self, batch, batch_idx):
if not self.cfg.fast_dev:
export_cfg(self.logger, self.cfg)
self.netG.train()
in_tensor_dict = {
"sample": batch["samples_geo"].permute(0, 2, 1),
"calib": batch["calib"],
"label": batch["labels_geo"].unsqueeze(1),
}
for name in self.in_total:
in_tensor_dict.update({name: batch[name]})
if self.prior_type == "icon":
for key in self.icon_keys:
in_tensor_dict.update({key: batch[key]})
elif self.prior_type == "pamir":
for key in self.pamir_keys:
in_tensor_dict.update({key: batch[key]})
else:
pass
preds_G, error_G = self.netG(in_tensor_dict)
acc, iou, prec, recall = self.evaluator.calc_acc(
preds_G.flatten(),
in_tensor_dict["label"].flatten(),
0.5,
use_sdf=self.cfg.sdf,
)
# metrics processing
metrics_log = {
"train_loss": error_G.item(),
"train_acc": acc.item(),
"train_iou": iou.item(),
"train_prec": prec.item(),
"train_recall": recall.item(),
}
tf_log = tf_log_convert(metrics_log)
bar_log = bar_log_convert(metrics_log)
if batch_idx % int(self.cfg.freq_show_train) == 0:
with torch.no_grad():
self.render_func(in_tensor_dict, dataset="train")
metrics_return = {
k.replace("train_", ""): torch.tensor(v) for k, v in metrics_log.items()
}
metrics_return.update(
{"loss": error_G, "log": tf_log, "progress_bar": bar_log})
return metrics_return
def training_epoch_end(self, outputs):
if [] in outputs:
outputs = outputs[0]
# metrics processing
metrics_log = {
"train_avgloss": batch_mean(outputs, "loss"),
"train_avgiou": batch_mean(outputs, "iou"),
"train_avgprec": batch_mean(outputs, "prec"),
"train_avgrecall": batch_mean(outputs, "recall"),
"train_avgacc": batch_mean(outputs, "acc"),
}
tf_log = tf_log_convert(metrics_log)
return {"log": tf_log}
def validation_step(self, batch, batch_idx):
self.netG.eval()
self.netG.training = False
in_tensor_dict = {
"sample": batch["samples_geo"].permute(0, 2, 1),
"calib": batch["calib"],
"label": batch["labels_geo"].unsqueeze(1),
}
for name in self.in_total:
in_tensor_dict.update({name: batch[name]})
if self.prior_type == "icon":
for key in self.icon_keys:
in_tensor_dict.update({key: batch[key]})
elif self.prior_type == "pamir":
for key in self.pamir_keys:
in_tensor_dict.update({key: batch[key]})
else:
pass
preds_G, error_G = self.netG(in_tensor_dict)
acc, iou, prec, recall = self.evaluator.calc_acc(
preds_G.flatten(),
in_tensor_dict["label"].flatten(),
0.5,
use_sdf=self.cfg.sdf,
)
if batch_idx % int(self.cfg.freq_show_val) == 0:
with torch.no_grad():
self.render_func(in_tensor_dict, dataset="val", idx=batch_idx)
metrics_return = {
"val_loss": error_G,
"val_acc": acc,
"val_iou": iou,
"val_prec": prec,
"val_recall": recall,
}
return metrics_return
def validation_epoch_end(self, outputs):
# metrics processing
metrics_log = {
"val_avgloss": batch_mean(outputs, "val_loss"),
"val_avgacc": batch_mean(outputs, "val_acc"),
"val_avgiou": batch_mean(outputs, "val_iou"),
"val_avgprec": batch_mean(outputs, "val_prec"),
"val_avgrecall": batch_mean(outputs, "val_recall"),
}
tf_log = tf_log_convert(metrics_log)
return {"log": tf_log}
def compute_vis_cmap(self, smpl_type, smpl_verts, smpl_faces):
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1)
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long())
if smpl_type == "smpl":
smplx_ind = self.smpl_data.smpl2smplx(np.arange(smpl_vis.shape[0]))
else:
smplx_ind = np.arange(smpl_vis.shape[0])
smpl_cmap = self.smpl_data.get_smpl_mat(smplx_ind)
return {
"smpl_vis": smpl_vis.unsqueeze(0).to(self.device),
"smpl_cmap": smpl_cmap.unsqueeze(0).to(self.device),
"smpl_verts": smpl_verts.unsqueeze(0),
}
@torch.enable_grad()
def optim_body(self, in_tensor_dict, batch):
smpl_model = self.get_smpl_model(
batch["type"][0], batch["gender"][0], batch["age"][0], None
).to(self.device)
in_tensor_dict["smpl_faces"] = (
torch.tensor(smpl_model.faces.astype(np.int))
.long()
.unsqueeze(0)
.to(self.device)
)
# The optimizer and variables
optimed_pose = torch.tensor(
batch["body_pose"][0], device=self.device, requires_grad=True
) # [1,23,3,3]
optimed_trans = torch.tensor(
batch["transl"][0], device=self.device, requires_grad=True
) # [3]
optimed_betas = torch.tensor(
batch["betas"][0], device=self.device, requires_grad=True
) # [1,10]
optimed_orient = torch.tensor(
batch["global_orient"][0], device=self.device, requires_grad=True
) # [1,1,3,3]
optimizer_smpl = torch.optim.SGD(
[optimed_pose, optimed_trans, optimed_betas, optimed_orient],
lr=1e-3,
momentum=0.9,
)
scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_smpl, mode="min", factor=0.5, verbose=0, min_lr=1e-5, patience=5
)
loop_smpl = range(50)
for i in loop_smpl:
optimizer_smpl.zero_grad()
# prior_loss, optimed_pose = dataset.vposer_prior(optimed_pose)
smpl_out = smpl_model(
betas=optimed_betas,
body_pose=optimed_pose,
global_orient=optimed_orient,
transl=optimed_trans,
return_verts=True,
)
smpl_verts = smpl_out.vertices[0] * 100.0
smpl_verts = projection(
smpl_verts, batch["calib"][0], format="tensor")
smpl_verts[:, 1] *= -1
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(
smpl_verts, in_tensor_dict["smpl_faces"])
(
in_tensor_dict["T_normal_F"],
in_tensor_dict["T_normal_B"],
) = self.render.get_rgb_image()
T_mask_F, T_mask_B = self.render.get_silhouette_image()
with torch.no_grad():
(
in_tensor_dict["normal_F"],
in_tensor_dict["normal_B"],
) = self.netG.normal_filter(in_tensor_dict)
# mask = torch.abs(in_tensor['T_normal_F']).sum(dim=0, keepdims=True) > 0.0
diff_F_smpl = torch.abs(
in_tensor_dict["T_normal_F"] - in_tensor_dict["normal_F"]
)
diff_B_smpl = torch.abs(
in_tensor_dict["T_normal_B"] - in_tensor_dict["normal_B"]
)
loss = (diff_F_smpl + diff_B_smpl).mean()
# silhouette loss
smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]
gt_arr = torch.cat(
[in_tensor_dict["normal_F"][0], in_tensor_dict["normal_B"][0]], dim=2
).permute(1, 2, 0)
gt_arr = ((gt_arr + 1.0) * 0.5).to(self.device)
bg_color = (
torch.Tensor([0.5, 0.5, 0.5]).unsqueeze(
0).unsqueeze(0).to(self.device)
)
gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float()
loss += torch.abs(smpl_arr - gt_arr).mean()
# Image.fromarray(((in_tensor_dict['T_normal_F'][0].permute(1,2,0)+1.0)*0.5*255.0).detach().cpu().numpy().astype(np.uint8)).show()
# loop_smpl.set_description(f"smpl = {loss:.3f}")
loss.backward(retain_graph=True)
optimizer_smpl.step()
scheduler_smpl.step(loss)
in_tensor_dict["smpl_verts"] = smpl_verts.unsqueeze(0)
in_tensor_dict.update(
self.compute_vis_cmap(
batch["type"][0],
in_tensor_dict["smpl_verts"][0],
in_tensor_dict["smpl_faces"][0],
)
)
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
return features, inter, in_tensor_dict
@torch.enable_grad()
def optim_cloth(self, verts_pr, faces_pr, inter):
# convert from GT to SDF
verts_pr -= (self.resolutions[-1] - 1) / 2.0
verts_pr /= (self.resolutions[-1] - 1) / 2.0
losses = {
"cloth": {"weight": 5.0, "value": 0.0},
"edge": {"weight": 100.0, "value": 0.0},
"normal": {"weight": 0.2, "value": 0.0},
"laplacian": {"weight": 100.0, "value": 0.0},
"smpl": {"weight": 1.0, "value": 0.0},
"deform": {"weight": 20.0, "value": 0.0},
}
deform_verts = torch.full(
verts_pr.shape, 0.0, device=self.device, requires_grad=True
)
optimizer_cloth = torch.optim.SGD(
[deform_verts], lr=1e-1, momentum=0.9)
scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer_cloth, mode="min", factor=0.1, verbose=0, min_lr=1e-3, patience=5
)
# cloth optimization
loop_cloth = range(100)
for i in loop_cloth:
optimizer_cloth.zero_grad()
self.render.load_meshes(
verts_pr.unsqueeze(0).to(self.device),
faces_pr.unsqueeze(0).to(self.device).long(),
deform_verts,
)
P_normal_F, P_normal_B = self.render.get_rgb_image()
update_mesh_shape_prior_losses(self.render.mesh, losses)
diff_F_cloth = torch.abs(P_normal_F[0] - inter[:3])
diff_B_cloth = torch.abs(P_normal_B[0] - inter[3:])
losses["cloth"]["value"] = (diff_F_cloth + diff_B_cloth).mean()
losses["deform"]["value"] = torch.topk(
torch.abs(deform_verts.flatten()), 30
)[0].mean()
# Weighted sum of the losses
cloth_loss = torch.tensor(0.0, device=self.device)
pbar_desc = ""
for k in losses.keys():
if k != "smpl":
cloth_loss_per_cls = losses[k]["value"] * \
losses[k]["weight"]
pbar_desc += f"{k}: {cloth_loss_per_cls:.3f} | "
cloth_loss += cloth_loss_per_cls
# loop_cloth.set_description(pbar_desc)
cloth_loss.backward(retain_graph=True)
optimizer_cloth.step()
scheduler_cloth.step(cloth_loss)
# convert from GT to SDF
deform_verts = deform_verts.flatten().detach()
deform_verts[torch.topk(torch.abs(deform_verts), 30)[
1]] = deform_verts.mean()
deform_verts = deform_verts.view(-1, 3).cpu()
verts_pr += deform_verts
verts_pr *= (self.resolutions[-1] - 1) / 2.0
verts_pr += (self.resolutions[-1] - 1) / 2.0
return verts_pr
def test_step(self, batch, batch_idx):
# dict_keys(['dataset', 'subject', 'rotation', 'scale', 'calib',
# 'normal_F', 'normal_B', 'image', 'T_normal_F', 'T_normal_B',
# 'z-trans', 'verts', 'faces', 'samples_geo', 'labels_geo',
# 'smpl_verts', 'smpl_faces', 'smpl_vis', 'smpl_cmap', 'pts_signs',
# 'type', 'gender', 'age', 'body_pose', 'global_orient', 'betas', 'transl'])
if self.evaluator._normal_render is None:
self.evaluator.init_gl()
self.netG.eval()
self.netG.training = False
in_tensor_dict = {}
# export paths
mesh_name = batch["subject"][0]
mesh_rot = batch["rotation"][0].item()
ckpt_dir = self.cfg.name
for kid, key in enumerate(self.cfg.dataset.noise_type):
ckpt_dir += f"_{key}_{self.cfg.dataset.noise_scale[kid]}"
if self.cfg.optim_cloth:
ckpt_dir += "_optim_cloth"
if self.cfg.optim_body:
ckpt_dir += "_optim_body"
self.export_dir = osp.join(self.cfg.results_path, ckpt_dir, mesh_name)
os.makedirs(self.export_dir, exist_ok=True)
for name in self.in_total:
if name in batch.keys():
in_tensor_dict.update({name: batch[name]})
# update the new T_normal_F/B
in_tensor_dict.update(
self.evaluator.render_normal(
batch["smpl_verts"], batch["smpl_faces"])
)
# update the new smpl_vis
(xy, z) = batch["smpl_verts"][0].split([2, 1], dim=1)
smpl_vis = get_visibility(
xy,
z,
torch.as_tensor(self.smpl_data.faces).type_as(
batch["smpl_verts"]).long(),
)
in_tensor_dict.update({"smpl_vis": smpl_vis.unsqueeze(0)})
if self.prior_type == "icon":
for key in self.icon_keys:
in_tensor_dict.update({key: batch[key]})
elif self.prior_type == "pamir":
for key in self.pamir_keys:
in_tensor_dict.update({key: batch[key]})
else:
pass
with torch.no_grad():
if self.cfg.optim_body:
features, inter, in_tensor_dict = self.optim_body(
in_tensor_dict, batch)
else:
features, inter = self.netG.filter(
in_tensor_dict, return_inter=True)
sdf = self.reconEngine(
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None
)
# save inter results
image = (
in_tensor_dict["image"][0].permute(
1, 2, 0).detach().cpu().numpy() + 1.0
) * 0.5
smpl_F = (
in_tensor_dict["T_normal_F"][0].permute(
1, 2, 0).detach().cpu().numpy()
+ 1.0
) * 0.5
smpl_B = (
in_tensor_dict["T_normal_B"][0].permute(
1, 2, 0).detach().cpu().numpy()
+ 1.0
) * 0.5
image_inter = np.concatenate(
self.tensor2image(512, inter[0]) + [smpl_F, smpl_B, image], axis=1
)
Image.fromarray((image_inter * 255.0).astype(np.uint8)).save(
osp.join(self.export_dir, f"{mesh_rot}_inter.png")
)
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf)
if self.clean_mesh_flag:
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr)
if self.cfg.optim_cloth:
verts_pr = self.optim_cloth(verts_pr, faces_pr, inter[0].detach())
verts_gt = batch["verts"][0]
faces_gt = batch["faces"][0]
self.result_eval.update(
{
"verts_gt": verts_gt,
"faces_gt": faces_gt,
"verts_pr": verts_pr,
"faces_pr": faces_pr,
"recon_size": (self.resolutions[-1] - 1.0),
"calib": batch["calib"][0],
}
)
self.evaluator.set_mesh(self.result_eval, scale_factor=1.0)
self.evaluator.space_transfer()
chamfer, p2s = self.evaluator.calculate_chamfer_p2s(
sampled_points=1000)
normal_consist = self.evaluator.calculate_normal_consist(
save_demo_img=osp.join(self.export_dir, f"{mesh_rot}_nc.png")
)
test_log = {"chamfer": chamfer, "p2s": p2s, "NC": normal_consist}
return test_log
def test_epoch_end(self, outputs):
# make_test_gif("/".join(self.export_dir.split("/")[:-2]))
accu_outputs = accumulate(
outputs,
rot_num=3,
split={
"thuman2": (0, 5),
},
)
print(colored(self.cfg.name, "green"))
print(colored(self.cfg.dataset.noise_scale, "green"))
self.logger.experiment.add_hparams(
hparam_dict={"lr_G": self.lr_G, "bsize": self.batch_size},
metric_dict=accu_outputs,
)
np.save(
osp.join(self.export_dir, "../test_results.npy"),
accu_outputs,
allow_pickle=True,
)
return accu_outputs
def tensor2image(self, height, inter):
all = []
for dim in self.in_geo_dim:
img = resize(
np.tile(
((inter[:dim].cpu().numpy() + 1.0) /
2.0).transpose(1, 2, 0),
(1, 1, int(3 / dim)),
),
(height, height),
anti_aliasing=True,
)
all.append(img)
inter = inter[dim:]
return all
def render_func(self, in_tensor_dict, dataset="title", idx=0):
for name in in_tensor_dict.keys():
in_tensor_dict[name] = in_tensor_dict[name][0:1]
self.netG.eval()
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
sdf = self.reconEngine(
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None
)
if sdf is not None:
render = self.reconEngine.display(sdf)
image_pred = np.flip(render[:, :, ::-1], axis=0)
height = image_pred.shape[0]
image_gt = resize(
((in_tensor_dict["image"].cpu().numpy()[0] + 1.0) / 2.0).transpose(
1, 2, 0
),
(height, height),
anti_aliasing=True,
)
image_inter = self.tensor2image(height, inter[0])
image = np.concatenate(
[image_pred, image_gt] + image_inter, axis=1)
step_id = self.global_step if dataset == "train" else self.global_step + idx
self.logger.experiment.add_image(
tag=f"Occupancy-{dataset}/{step_id}",
img_tensor=image.transpose(2, 0, 1),
global_step=step_id,
)
def test_single(self, batch):
self.netG.eval()
self.netG.training = False
in_tensor_dict = {}
for name in self.in_total:
if name in batch.keys():
in_tensor_dict.update({name: batch[name]})
if self.prior_type == "icon":
for key in self.icon_keys:
in_tensor_dict.update({key: batch[key]})
elif self.prior_type == "pamir":
for key in self.pamir_keys:
in_tensor_dict.update({key: batch[key]})
else:
pass
features, inter = self.netG.filter(in_tensor_dict, return_inter=True)
sdf = self.reconEngine(
opt=self.cfg, netG=self.netG, features=features, proj_matrix=None
)
verts_pr, faces_pr = self.reconEngine.export_mesh(sdf)
if self.clean_mesh_flag:
verts_pr, faces_pr = clean_mesh(verts_pr, faces_pr)
verts_pr -= (self.resolutions[-1] - 1) / 2.0
verts_pr /= (self.resolutions[-1] - 1) / 2.0
return verts_pr, faces_pr, inter
|