File size: 16,853 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import numpy as np
import pickle
import torch
import os


class SMPLModel():
    def __init__(self, model_path, age):
        """
        SMPL model.

        Parameter:
        ---------
        model_path: Path to the SMPL model parameters, pre-processed by
        `preprocess.py`.

        """
        with open(model_path, 'rb') as f:
            params = pickle.load(f, encoding='latin1')

            self.J_regressor = params['J_regressor']
            self.weights = np.asarray(params['weights'])
            self.posedirs = np.asarray(params['posedirs'])
            self.v_template = np.asarray(params['v_template'])
            self.shapedirs = np.asarray(params['shapedirs'])
            self.faces = np.asarray(params['f'])
            self.kintree_table = np.asarray(params['kintree_table'])

        self.pose_shape = [24, 3]
        self.beta_shape = [10]
        self.trans_shape = [3]

        if age == 'kid':
            v_template_smil = np.load(
                os.path.join(os.path.dirname(model_path),
                             "smpl/smpl_kid_template.npy"))
            v_template_smil -= np.mean(v_template_smil, axis=0)
            v_template_diff = np.expand_dims(v_template_smil - self.v_template,
                                             axis=2)
            self.shapedirs = np.concatenate(
                (self.shapedirs[:, :, :self.beta_shape[0]], v_template_diff),
                axis=2)
            self.beta_shape[0] += 1

        id_to_col = {
            self.kintree_table[1, i]: i
            for i in range(self.kintree_table.shape[1])
        }
        self.parent = {
            i: id_to_col[self.kintree_table[0, i]]
            for i in range(1, self.kintree_table.shape[1])
        }

        self.pose = np.zeros(self.pose_shape)
        self.beta = np.zeros(self.beta_shape)
        self.trans = np.zeros(self.trans_shape)

        self.verts = None
        self.J = None
        self.R = None
        self.G = None

        self.update()

    def set_params(self, pose=None, beta=None, trans=None):
        """
        Set pose, shape, and/or translation parameters of SMPL model. Verices of the
        model will be updated and returned.

        Prameters:
        ---------
        pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation
        relative to parent joint. For root joint it's global orientation.
        Represented in a axis-angle format.

        beta: Parameter for model shape. A vector of shape [10]. Coefficients for
        PCA component. Only 10 components were released by MPI.

        trans: Global translation of shape [3].

        Return:
        ------
        Updated vertices.

        """
        if pose is not None:
            self.pose = pose
        if beta is not None:
            self.beta = beta
        if trans is not None:
            self.trans = trans
        self.update()
        return self.verts

    def update(self):
        """
        Called automatically when parameters are updated.

        """
        # how beta affect body shape
        v_shaped = self.shapedirs.dot(self.beta) + self.v_template
        # joints location
        self.J = self.J_regressor.dot(v_shaped)
        pose_cube = self.pose.reshape((-1, 1, 3))
        # rotation matrix for each joint
        self.R = self.rodrigues(pose_cube)
        I_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0),
                                 (self.R.shape[0] - 1, 3, 3))
        lrotmin = (self.R[1:] - I_cube).ravel()
        # how pose affect body shape in zero pose
        v_posed = v_shaped + self.posedirs.dot(lrotmin)
        # world transformation of each joint
        G = np.empty((self.kintree_table.shape[1], 4, 4))
        G[0] = self.with_zeros(
            np.hstack((self.R[0], self.J[0, :].reshape([3, 1]))))
        for i in range(1, self.kintree_table.shape[1]):
            G[i] = G[self.parent[i]].dot(
                self.with_zeros(
                    np.hstack([
                        self.R[i],
                        ((self.J[i, :] - self.J[self.parent[i], :]).reshape(
                            [3, 1]))
                    ])))
        # remove the transformation due to the rest pose
        G = G - self.pack(
            np.matmul(
                G,
                np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1])))
        # transformation of each vertex
        T = np.tensordot(self.weights, G, axes=[[1], [0]])
        rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1])))
        v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1,
                                                                    4])[:, :3]
        self.verts = v + self.trans.reshape([1, 3])
        self.G = G

    def rodrigues(self, r):
        """
        Rodrigues' rotation formula that turns axis-angle vector into rotation
        matrix in a batch-ed manner.

        Parameter:
        ----------
        r: Axis-angle rotation vector of shape [batch_size, 1, 3].

        Return:
        -------
        Rotation matrix of shape [batch_size, 3, 3].

        """
        theta = np.linalg.norm(r, axis=(1, 2), keepdims=True)
        # avoid zero divide
        theta = np.maximum(theta, np.finfo(np.float64).tiny)
        r_hat = r / theta
        cos = np.cos(theta)
        z_stick = np.zeros(theta.shape[0])
        m = np.dstack([
            z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1], r_hat[:, 0, 2], z_stick,
            -r_hat[:, 0, 0], -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick
        ]).reshape([-1, 3, 3])
        i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0),
                                 [theta.shape[0], 3, 3])
        A = np.transpose(r_hat, axes=[0, 2, 1])
        B = r_hat
        dot = np.matmul(A, B)
        R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m
        return R

    def with_zeros(self, x):
        """
        Append a [0, 0, 0, 1] vector to a [3, 4] matrix.

        Parameter:
        ---------
        x: Matrix to be appended.

        Return:
        ------
        Matrix after appending of shape [4,4]

        """
        return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]])))

    def pack(self, x):
        """
        Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched
        manner.

        Parameter:
        ----------
        x: Matrices to be appended of shape [batch_size, 4, 1]

        Return:
        ------
        Matrix of shape [batch_size, 4, 4] after appending.

        """
        return np.dstack((np.zeros((x.shape[0], 4, 3)), x))

    def save_to_obj(self, path):
        """
        Save the SMPL model into .obj file.

        Parameter:
        ---------
        path: Path to save.

        """
        with open(path, 'w') as fp:
            for v in self.verts:
                fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
            for f in self.faces + 1:
                fp.write('f %d %d %d\n' % (f[0], f[1], f[2]))


class TetraSMPLModel():
    def __init__(self,
                 model_path,
                 model_addition_path,
                 age='adult',
                 v_template=None):
        """
        SMPL model.

        Parameter:
        ---------
        model_path: Path to the SMPL model parameters, pre-processed by
        `preprocess.py`.

        """
        with open(model_path, 'rb') as f:
            params = pickle.load(f, encoding='latin1')

            self.J_regressor = params['J_regressor']
            self.weights = np.asarray(params['weights'])
            self.posedirs = np.asarray(params['posedirs'])

            if v_template is not None:
                self.v_template = v_template
            else:
                self.v_template = np.asarray(params['v_template'])

            self.shapedirs = np.asarray(params['shapedirs'])
            self.faces = np.asarray(params['f'])
            self.kintree_table = np.asarray(params['kintree_table'])

        params_added = np.load(model_addition_path)
        self.v_template_added = params_added['v_template_added']
        self.weights_added = params_added['weights_added']
        self.shapedirs_added = params_added['shapedirs_added']
        self.posedirs_added = params_added['posedirs_added']
        self.tetrahedrons = params_added['tetrahedrons']

        id_to_col = {
            self.kintree_table[1, i]: i
            for i in range(self.kintree_table.shape[1])
        }
        self.parent = {
            i: id_to_col[self.kintree_table[0, i]]
            for i in range(1, self.kintree_table.shape[1])
        }

        self.pose_shape = [24, 3]
        self.beta_shape = [10]
        self.trans_shape = [3]

        if age == 'kid':
            v_template_smil = np.load(
                os.path.join(os.path.dirname(model_path),
                             "smpl/smpl_kid_template.npy"))
            v_template_smil -= np.mean(v_template_smil, axis=0)
            v_template_diff = np.expand_dims(v_template_smil - self.v_template,
                                             axis=2)
            self.shapedirs = np.concatenate(
                (self.shapedirs[:, :, :self.beta_shape[0]], v_template_diff),
                axis=2)
            self.beta_shape[0] += 1

        self.pose = np.zeros(self.pose_shape)
        self.beta = np.zeros(self.beta_shape)
        self.trans = np.zeros(self.trans_shape)

        self.verts = None
        self.verts_added = None
        self.J = None
        self.R = None
        self.G = None

        self.update()

    def set_params(self, pose=None, beta=None, trans=None):
        """
        Set pose, shape, and/or translation parameters of SMPL model. Verices of the
        model will be updated and returned.

        Prameters:
        ---------
        pose: Also known as 'theta', a [24,3] matrix indicating child joint rotation
        relative to parent joint. For root joint it's global orientation.
        Represented in a axis-angle format.

        beta: Parameter for model shape. A vector of shape [10]. Coefficients for
        PCA component. Only 10 components were released by MPI.

        trans: Global translation of shape [3].

        Return:
        ------
        Updated vertices.

        """

        if torch.is_tensor(pose):
            pose = pose.detach().cpu().numpy()
        if torch.is_tensor(beta):
            beta = beta.detach().cpu().numpy()

        if pose is not None:
            self.pose = pose
        if beta is not None:
            self.beta = beta
        if trans is not None:
            self.trans = trans
        self.update()
        return self.verts

    def update(self):
        """
        Called automatically when parameters are updated.

        """
        # how beta affect body shape
        v_shaped = self.shapedirs.dot(self.beta) + self.v_template
        v_shaped_added = self.shapedirs_added.dot(
            self.beta) + self.v_template_added
        # joints location
        self.J = self.J_regressor.dot(v_shaped)
        pose_cube = self.pose.reshape((-1, 1, 3))
        # rotation matrix for each joint
        self.R = self.rodrigues(pose_cube)
        I_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0),
                                 (self.R.shape[0] - 1, 3, 3))
        lrotmin = (self.R[1:] - I_cube).ravel()
        # how pose affect body shape in zero pose
        v_posed = v_shaped + self.posedirs.dot(lrotmin)
        v_posed_added = v_shaped_added + self.posedirs_added.dot(lrotmin)
        # world transformation of each joint
        G = np.empty((self.kintree_table.shape[1], 4, 4))
        G[0] = self.with_zeros(
            np.hstack((self.R[0], self.J[0, :].reshape([3, 1]))))
        for i in range(1, self.kintree_table.shape[1]):
            G[i] = G[self.parent[i]].dot(
                self.with_zeros(
                    np.hstack([
                        self.R[i],
                        ((self.J[i, :] - self.J[self.parent[i], :]).reshape(
                            [3, 1]))
                    ])))
        # remove the transformation due to the rest pose
        G = G - self.pack(
            np.matmul(
                G,
                np.hstack([self.J, np.zeros([24, 1])]).reshape([24, 4, 1])))
        self.G = G
        # transformation of each vertex
        T = np.tensordot(self.weights, G, axes=[[1], [0]])
        rest_shape_h = np.hstack((v_posed, np.ones([v_posed.shape[0], 1])))
        v = np.matmul(T, rest_shape_h.reshape([-1, 4, 1])).reshape([-1,
                                                                    4])[:, :3]
        self.verts = v + self.trans.reshape([1, 3])
        T_added = np.tensordot(self.weights_added, G, axes=[[1], [0]])
        rest_shape_added_h = np.hstack(
            (v_posed_added, np.ones([v_posed_added.shape[0], 1])))
        v_added = np.matmul(T_added,
                            rest_shape_added_h.reshape([-1, 4,
                                                        1])).reshape([-1, 4
                                                                      ])[:, :3]
        self.verts_added = v_added + self.trans.reshape([1, 3])

    def rodrigues(self, r):
        """
        Rodrigues' rotation formula that turns axis-angle vector into rotation
        matrix in a batch-ed manner.

        Parameter:
        ----------
        r: Axis-angle rotation vector of shape [batch_size, 1, 3].

        Return:
        -------
        Rotation matrix of shape [batch_size, 3, 3].

        """
        theta = np.linalg.norm(r, axis=(1, 2), keepdims=True)
        # avoid zero divide
        theta = np.maximum(theta, np.finfo(np.float64).tiny)
        r_hat = r / theta
        cos = np.cos(theta)
        z_stick = np.zeros(theta.shape[0])
        m = np.dstack([
            z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1], r_hat[:, 0, 2], z_stick,
            -r_hat[:, 0, 0], -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick
        ]).reshape([-1, 3, 3])
        i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0),
                                 [theta.shape[0], 3, 3])
        A = np.transpose(r_hat, axes=[0, 2, 1])
        B = r_hat
        dot = np.matmul(A, B)
        R = cos * i_cube + (1 - cos) * dot + np.sin(theta) * m
        return R

    def with_zeros(self, x):
        """
        Append a [0, 0, 0, 1] vector to a [3, 4] matrix.

        Parameter:
        ---------
        x: Matrix to be appended.

        Return:
        ------
        Matrix after appending of shape [4,4]

        """
        return np.vstack((x, np.array([[0.0, 0.0, 0.0, 1.0]])))

    def pack(self, x):
        """
        Append zero matrices of shape [4, 3] to vectors of [4, 1] shape in a batched
        manner.

        Parameter:
        ----------
        x: Matrices to be appended of shape [batch_size, 4, 1]

        Return:
        ------
        Matrix of shape [batch_size, 4, 4] after appending.

        """
        return np.dstack((np.zeros((x.shape[0], 4, 3)), x))

    def save_mesh_to_obj(self, path):
        """
        Save the SMPL model into .obj file.

        Parameter:
        ---------
        path: Path to save.

        """
        with open(path, 'w') as fp:
            for v in self.verts:
                fp.write('v %f %f %f\n' % (v[0], v[1], v[2]))
            for f in self.faces + 1:
                fp.write('f %d %d %d\n' % (f[0], f[1], f[2]))

    def save_tetrahedron_to_obj(self, path):
        """
        Save the tetrahedron SMPL model into .obj file.

        Parameter:
        ---------
        path: Path to save.

        """

        with open(path, 'w') as fp:
            for v in self.verts:
                fp.write('v %f %f %f 1 0 0\n' % (v[0], v[1], v[2]))
            for va in self.verts_added:
                fp.write('v %f %f %f 0 0 1\n' % (va[0], va[1], va[2]))
            for t in self.tetrahedrons + 1:
                fp.write('f %d %d %d\n' % (t[0], t[2], t[1]))
                fp.write('f %d %d %d\n' % (t[0], t[3], t[2]))
                fp.write('f %d %d %d\n' % (t[0], t[1], t[3]))
                fp.write('f %d %d %d\n' % (t[1], t[2], t[3]))