from transformers import pipeline import tempfile import gradio as gr from neon_tts_plugin_coqui import CoquiTTS import os import time from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from flores200_codes import flores_codes pipe = pipeline(model="Yuyang2022/yue") # change to "your-username/the-name-you-picked" LANGUAGES = list(CoquiTTS.langs.keys()) coquiTTS = CoquiTTS() def audio_tts(audio, language:str, lang): text = pipe(audio)["text"] text = translation("zho_Hant", lang, text) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(text, fp, speaker = {"language" : language}) return fp.name def load_models(): # build model and tokenizer model_name_dict = { "nllb-distilled-600M": "facebook/nllb-200-distilled-600M", } model_dict = {} for call_name, real_name in model_name_dict.items(): print("\tLoading model: %s" % call_name) model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name + "_model"] = model model_dict[call_name + "_tokenizer"] = tokenizer return model_dict def translation(source, target, text): if len(model_dict) == 2: model_name = "nllb-distilled-600M" start_time = time.time() source = "zho_Hant" #flores_codes[source] target = flores_codes[target] model = model_dict[model_name + "_model"] tokenizer = model_dict[model_name + "_tokenizer"] translator = pipeline( "translation", model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target, ) output = translator(text, max_length=400) end_time = time.time() output = output[0]["translation_text"] result = { "inference_time": end_time - start_time, "source": source, "target": target, "result": output, } return output if __name__ == "__main__": print("\tinit models") global model_dict model_dict = load_models() lang_codes = list(flores_codes.keys()) # define gradio demo inputs = [gr.Audio(source="microphone", type="filepath"), gr.Radio( label="Target text Language", choices=LANGUAGES, value="en"), gr.inputs.Dropdown(lang_codes, default="English", label="Target text Language"),] outputs = gr.Audio(label="Output") demo = gr.Interface(fn=audio_tts, inputs=inputs, outputs=outputs, title="translation - speech to speech", description="Realtime demo for speech translation.",) demo.launch()