File size: 34,951 Bytes
4962437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
from __future__ import annotations

import logging
import sys
import warnings
from typing import (
    AbstractSet,
    Any,
    AsyncIterator,
    Callable,
    Collection,
    Dict,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Set,
    Tuple,
    Union,
)

from langchain.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain.llms.base import BaseLLM, create_base_retry_decorator
from langchain.pydantic_v1 import Field, root_validator
from langchain.schema import Generation, LLMResult
from langchain.schema.output import GenerationChunk
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
from langchain.utils.utils import build_extra_kwargs

logger = logging.getLogger(__name__)


def update_token_usage(
    keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
) -> None:
    """Update token usage."""
    _keys_to_use = keys.intersection(response["usage"])
    for _key in _keys_to_use:
        if _key not in token_usage:
            token_usage[_key] = response["usage"][_key]
        else:
            token_usage[_key] += response["usage"][_key]


def _stream_response_to_generation_chunk(
    stream_response: Dict[str, Any],
) -> GenerationChunk:
    """Convert a stream response to a generation chunk."""
    return GenerationChunk(
        text=stream_response["choices"][0]["text"],
        generation_info=dict(
            finish_reason=stream_response["choices"][0].get("finish_reason", None),
            logprobs=stream_response["choices"][0].get("logprobs", None),
        ),
    )


def _update_response(response: Dict[str, Any], stream_response: Dict[str, Any]) -> None:
    """Update response from the stream response."""
    response["choices"][0]["text"] += stream_response["choices"][0]["text"]
    response["choices"][0]["finish_reason"] = stream_response["choices"][0].get(
        "finish_reason", None
    )
    response["choices"][0]["logprobs"] = stream_response["choices"][0]["logprobs"]


def _streaming_response_template() -> Dict[str, Any]:
    return {
        "choices": [
            {
                "text": "",
                "finish_reason": None,
                "logprobs": None,
            }
        ]
    }


def _create_retry_decorator(
    llm: Union[BaseOpenAI, OpenAIChat],
    run_manager: Optional[
        Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
    ] = None,
) -> Callable[[Any], Any]:
    import llm

    errors = [
        llm.error.Timeout,
        llm.error.APIError,
        llm.error.APIConnectionError,
        llm.error.RateLimitError,
        llm.error.ServiceUnavailableError,
    ]
    return create_base_retry_decorator(
        error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
    )


def completion_with_retry(
    llm: Union[BaseOpenAI, OpenAIChat],
    run_manager: Optional[CallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the completion call."""
    retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

    @retry_decorator
    def _completion_with_retry(**kwargs: Any) -> Any:
        return llm.client.create(**kwargs)

    return _completion_with_retry(**kwargs)


async def acompletion_with_retry(
    llm: Union[BaseOpenAI, OpenAIChat],
    run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
    **kwargs: Any,
) -> Any:
    """Use tenacity to retry the async completion call."""
    retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)

    @retry_decorator
    async def _completion_with_retry(**kwargs: Any) -> Any:
        # Use OpenAI's async api https://github.com/openai/openai-python#async-api
        return await llm.client.acreate(**kwargs)

    return await _completion_with_retry(**kwargs)


class BaseOpenAI(BaseLLM):
    """Base OpenAI large language model class."""

    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"openai_api_key": "OPENAI_API_KEY"}

    @classmethod
    def is_lc_serializable(cls) -> bool:
        return True

    client: Any = None  #: :meta private:
    model_name: str = Field(default="text-davinci-003", alias="model")
    """Model name to use."""
    temperature: float = 0.7
    """What sampling temperature to use."""
    max_tokens: int = 256
    """The maximum number of tokens to generate in the completion.
    -1 returns as many tokens as possible given the prompt and
    the models maximal context size."""
    top_p: float = 1
    """Total probability mass of tokens to consider at each step."""
    frequency_penalty: float = 0
    """Penalizes repeated tokens according to frequency."""
    presence_penalty: float = 0
    """Penalizes repeated tokens."""
    n: int = 1
    """How many completions to generate for each prompt."""
    best_of: int = 1
    """Generates best_of completions server-side and returns the "best"."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    openai_api_key: Optional[str] = None
    openai_api_base: Optional[str] = None
    openai_organization: Optional[str] = None
    # to support explicit proxy for OpenAI
    openai_proxy: Optional[str] = None
    batch_size: int = 20
    """Batch size to use when passing multiple documents to generate."""
    request_timeout: Optional[Union[float, Tuple[float, float]]] = None
    """Timeout for requests to OpenAI completion API. Default is 600 seconds."""
    logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
    """Adjust the probability of specific tokens being generated."""
    max_retries: int = 6
    """Maximum number of retries to make when generating."""
    streaming: bool = False
    """Whether to stream the results or not."""
    allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
    """Set of special tokens that are allowed。"""
    disallowed_special: Union[Literal["all"], Collection[str]] = "all"
    """Set of special tokens that are not allowed。"""
    tiktoken_model_name: Optional[str] = None
    """The model name to pass to tiktoken when using this class. 
    Tiktoken is used to count the number of tokens in documents to constrain 
    them to be under a certain limit. By default, when set to None, this will 
    be the same as the embedding model name. However, there are some cases 
    where you may want to use this Embedding class with a model name not 
    supported by tiktoken. This can include when using Azure embeddings or 
    when using one of the many model providers that expose an OpenAI-like 
    API but with different models. In those cases, in order to avoid erroring 
    when tiktoken is called, you can specify a model name to use here."""

    def __new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]:  # type: ignore
        """Initialize the OpenAI object."""
        model_name = data.get("model_name", "")
        if (
            model_name.startswith("gpt-3.5-turbo") or model_name.startswith("gpt-4")
        ) and "-instruct" not in model_name:
            warnings.warn(
                "You are trying to use a chat model. This way of initializing it is "
                "no longer supported. Instead, please use: "
                "`from langchain.chat_models import ChatOpenAI`"
            )
            return OpenAIChat(**data)
        return super().__new__(cls)

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        values["model_kwargs"] = build_extra_kwargs(
            extra, values, all_required_field_names
        )
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        values["openai_api_key"] = get_from_dict_or_env(
            values, "openai_api_key", "OPENAI_API_KEY"
        )
        values["openai_api_base"] = get_from_dict_or_env(
            values,
            "openai_api_base",
            "OPENAI_API_BASE",
            default="",
        )
        values["openai_proxy"] = get_from_dict_or_env(
            values,
            "openai_proxy",
            "OPENAI_PROXY",
            default="",
        )
        values["openai_organization"] = get_from_dict_or_env(
            values,
            "openai_organization",
            "OPENAI_ORGANIZATION",
            default="",
        )
        try:
            import llm

            values["client"] = llm.Completion
        except ImportError:
            raise ImportError(
                "Could not import openai python package. "
                "Please install it with `pip install openai`."
            )
        if values["streaming"] and values["n"] > 1:
            raise ValueError("Cannot stream results when n > 1.")
        if values["streaming"] and values["best_of"] > 1:
            raise ValueError("Cannot stream results when best_of > 1.")
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        normal_params = {
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
            "top_p": self.top_p,
            "frequency_penalty": self.frequency_penalty,
            "presence_penalty": self.presence_penalty,
            "n": self.n,
            "request_timeout": self.request_timeout,
            "logit_bias": self.logit_bias,
        }

        # Azure gpt-35-turbo doesn't support best_of
        # don't specify best_of if it is 1
        if self.best_of > 1:
            normal_params["best_of"] = self.best_of

        return {**normal_params, **self.model_kwargs}

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        params = {**self._invocation_params, **kwargs, "stream": True}
        self.get_sub_prompts(params, [prompt], stop)  # this mutates params
        for stream_resp in completion_with_retry(
            self, prompt=prompt, run_manager=run_manager, **params
        ):
            chunk = _stream_response_to_generation_chunk(stream_resp)
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(
                    chunk.text,
                    chunk=chunk,
                    verbose=self.verbose,
                    logprobs=chunk.generation_info["logprobs"]
                    if chunk.generation_info
                    else None,
                )

    async def _astream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[GenerationChunk]:
        params = {**self._invocation_params, **kwargs, "stream": True}
        self.get_sub_prompts(params, [prompt], stop)  # this mutate params
        async for stream_resp in await acompletion_with_retry(
            self, prompt=prompt, run_manager=run_manager, **params
        ):
            chunk = _stream_response_to_generation_chunk(stream_resp)
            yield chunk
            if run_manager:
                await run_manager.on_llm_new_token(
                    chunk.text,
                    chunk=chunk,
                    verbose=self.verbose,
                    logprobs=chunk.generation_info["logprobs"]
                    if chunk.generation_info
                    else None,
                )

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        """Call out to OpenAI's endpoint with k unique prompts.

        Args:
            prompts: The prompts to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            The full LLM output.

        Example:
            .. code-block:: python

                response = openai.generate(["Tell me a joke."])
        """
        # TODO: write a unit test for this
        params = self._invocation_params
        params = {**params, **kwargs}
        sub_prompts = self.get_sub_prompts(params, prompts, stop)
        choices = []
        token_usage: Dict[str, int] = {}
        # Get the token usage from the response.
        # Includes prompt, completion, and total tokens used.
        _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
        for _prompts in sub_prompts:
            if self.streaming:
                if len(_prompts) > 1:
                    raise ValueError("Cannot stream results with multiple prompts.")

                generation: Optional[GenerationChunk] = None
                for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs):
                    if generation is None:
                        generation = chunk
                    else:
                        generation += chunk
                assert generation is not None
                choices.append(
                    {
                        "text": generation.text,
                        "finish_reason": generation.generation_info.get("finish_reason")
                        if generation.generation_info
                        else None,
                        "logprobs": generation.generation_info.get("logprobs")
                        if generation.generation_info
                        else None,
                    }
                )
            else:
                response = completion_with_retry(
                    self, prompt=_prompts, run_manager=run_manager, **params
                )
                choices.extend(response["choices"])
                update_token_usage(_keys, response, token_usage)
        return self.create_llm_result(choices, prompts, token_usage)

    async def _agenerate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        """Call out to OpenAI's endpoint async with k unique prompts."""
        params = self._invocation_params
        params = {**params, **kwargs}
        sub_prompts = self.get_sub_prompts(params, prompts, stop)
        choices = []
        token_usage: Dict[str, int] = {}
        # Get the token usage from the response.
        # Includes prompt, completion, and total tokens used.
        _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
        for _prompts in sub_prompts:
            if self.streaming:
                if len(_prompts) > 1:
                    raise ValueError("Cannot stream results with multiple prompts.")

                generation: Optional[GenerationChunk] = None
                async for chunk in self._astream(
                    _prompts[0], stop, run_manager, **kwargs
                ):
                    if generation is None:
                        generation = chunk
                    else:
                        generation += chunk
                assert generation is not None
                choices.append(
                    {
                        "text": generation.text,
                        "finish_reason": generation.generation_info.get("finish_reason")
                        if generation.generation_info
                        else None,
                        "logprobs": generation.generation_info.get("logprobs")
                        if generation.generation_info
                        else None,
                    }
                )
            else:
                response = await acompletion_with_retry(
                    self, prompt=_prompts, run_manager=run_manager, **params
                )
                choices.extend(response["choices"])
                update_token_usage(_keys, response, token_usage)
        return self.create_llm_result(choices, prompts, token_usage)

    def get_sub_prompts(
        self,
        params: Dict[str, Any],
        prompts: List[str],
        stop: Optional[List[str]] = None,
    ) -> List[List[str]]:
        """Get the sub prompts for llm call."""
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop
        if params["max_tokens"] == -1:
            if len(prompts) != 1:
                raise ValueError(
                    "max_tokens set to -1 not supported for multiple inputs."
                )
            params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
        sub_prompts = [
            prompts[i : i + self.batch_size]
            for i in range(0, len(prompts), self.batch_size)
        ]
        return sub_prompts

    def create_llm_result(
        self, choices: Any, prompts: List[str], token_usage: Dict[str, int]
    ) -> LLMResult:
        """Create the LLMResult from the choices and prompts."""
        generations = []
        for i, _ in enumerate(prompts):
            sub_choices = choices[i * self.n : (i + 1) * self.n]
            generations.append(
                [
                    Generation(
                        text=choice["text"],
                        generation_info=dict(
                            finish_reason=choice.get("finish_reason"),
                            logprobs=choice.get("logprobs"),
                        ),
                    )
                    for choice in sub_choices
                ]
            )
        llm_output = {"token_usage": token_usage, "model_name": self.model_name}
        return LLMResult(generations=generations, llm_output=llm_output)

    @property
    def _invocation_params(self) -> Dict[str, Any]:
        """Get the parameters used to invoke the model."""
        openai_creds: Dict[str, Any] = {
            "api_key": self.openai_api_key,
            "api_base": self.openai_api_base,
            "organization": self.openai_organization,
        }
        if self.openai_proxy:
            import llm

            llm.proxy = {"http": self.openai_proxy, "https": self.openai_proxy}  # type: ignore[assignment]  # noqa: E501
        return {**openai_creds, **self._default_params}

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {**{"model_name": self.model_name}, **self._default_params}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "openai"

    def get_token_ids(self, text: str) -> List[int]:
        """Get the token IDs using the tiktoken package."""
        # tiktoken NOT supported for Python < 3.8
        if sys.version_info[1] < 8:
            return super().get_num_tokens(text)
        try:
            import tiktoken
        except ImportError:
            raise ImportError(
                "Could not import tiktoken python package. "
                "This is needed in order to calculate get_num_tokens. "
                "Please install it with `pip install tiktoken`."
            )

        model_name = self.tiktoken_model_name or self.model_name
        try:
            enc = tiktoken.encoding_for_model(model_name)
        except KeyError:
            logger.warning("Warning: model not found. Using cl100k_base encoding.")
            model = "cl100k_base"
            enc = tiktoken.get_encoding(model)

        return enc.encode(
            text,
            allowed_special=self.allowed_special,
            disallowed_special=self.disallowed_special,
        )

    @staticmethod
    def modelname_to_contextsize(modelname: str) -> int:
        """Calculate the maximum number of tokens possible to generate for a model.

        Args:
            modelname: The modelname we want to know the context size for.

        Returns:
            The maximum context size

        Example:
            .. code-block:: python

                max_tokens = openai.modelname_to_contextsize("text-davinci-003")
        """
        model_token_mapping = {
            "gpt-4": 8192,
            "gpt-4-0314": 8192,
            "gpt-4-0613": 8192,
            "gpt-4-32k": 32768,
            "gpt-4-32k-0314": 32768,
            "gpt-4-32k-0613": 32768,
            "gpt-3.5-turbo": 4096,
            "gpt-3.5-turbo-0301": 4096,
            "gpt-3.5-turbo-0613": 4096,
            "gpt-3.5-turbo-16k": 16385,
            "gpt-3.5-turbo-16k-0613": 16385,
            "gpt-3.5-turbo-instruct": 4096,
            "text-ada-001": 2049,
            "ada": 2049,
            "text-babbage-001": 2040,
            "babbage": 2049,
            "text-curie-001": 2049,
            "curie": 2049,
            "davinci": 2049,
            "text-davinci-003": 4097,
            "text-davinci-002": 4097,
            "code-davinci-002": 8001,
            "code-davinci-001": 8001,
            "code-cushman-002": 2048,
            "code-cushman-001": 2048,
        }

        # handling finetuned models
        if "ft-" in modelname:
            modelname = modelname.split(":")[0]

        context_size = model_token_mapping.get(modelname, None)

        if context_size is None:
            raise ValueError(
                f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
                "Known models are: " + ", ".join(model_token_mapping.keys())
            )

        return context_size

    @property
    def max_context_size(self) -> int:
        """Get max context size for this model."""
        return self.modelname_to_contextsize(self.model_name)

    def max_tokens_for_prompt(self, prompt: str) -> int:
        """Calculate the maximum number of tokens possible to generate for a prompt.

        Args:
            prompt: The prompt to pass into the model.

        Returns:
            The maximum number of tokens to generate for a prompt.

        Example:
            .. code-block:: python

                max_tokens = openai.max_token_for_prompt("Tell me a joke.")
        """
        num_tokens = self.get_num_tokens(prompt)
        return self.max_context_size - num_tokens


class OpenAI(BaseOpenAI):
    """OpenAI large language models.

    To use, you should have the ``openai`` python package installed, and the
    environment variable ``OPENAI_API_KEY`` set with your API key.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain.llms import OpenAI
            openai = OpenAI(model_name="text-davinci-003")
    """

    @property
    def _invocation_params(self) -> Dict[str, Any]:
        return {**{"model": self.model_name}, **super()._invocation_params}


class AzureOpenAI(BaseOpenAI):
    """Azure-specific OpenAI large language models.

    To use, you should have the ``openai`` python package installed, and the
    environment variable ``OPENAI_API_KEY`` set with your API key.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain.llms import AzureOpenAI
            openai = AzureOpenAI(model_name="text-davinci-003")
    """

    deployment_name: str = ""
    """Deployment name to use."""
    openai_api_type: str = ""
    openai_api_version: str = ""

    @root_validator()
    def validate_azure_settings(cls, values: Dict) -> Dict:
        values["openai_api_version"] = get_from_dict_or_env(
            values,
            "openai_api_version",
            "OPENAI_API_VERSION",
        )
        values["openai_api_type"] = get_from_dict_or_env(
            values, "openai_api_type", "OPENAI_API_TYPE", "azure"
        )
        return values

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        return {
            **{"deployment_name": self.deployment_name},
            **super()._identifying_params,
        }

    @property
    def _invocation_params(self) -> Dict[str, Any]:
        openai_params = {
            "engine": self.deployment_name,
            "api_type": self.openai_api_type,
            "api_version": self.openai_api_version,
        }
        return {**openai_params, **super()._invocation_params}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "azure"


class OpenAIChat(BaseLLM):
    """OpenAI Chat large language models.

    To use, you should have the ``openai`` python package installed, and the
    environment variable ``OPENAI_API_KEY`` set with your API key.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain.llms import OpenAIChat
            openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
    """

    client: Any  #: :meta private:
    model_name: str = "gpt-3.5-turbo"
    """Model name to use."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    openai_api_key: Optional[str] = None
    openai_api_base: Optional[str] = None
    # to support explicit proxy for OpenAI
    openai_proxy: Optional[str] = None
    max_retries: int = 6
    """Maximum number of retries to make when generating."""
    prefix_messages: List = Field(default_factory=list)
    """Series of messages for Chat input."""
    streaming: bool = False
    """Whether to stream the results or not."""
    allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
    """Set of special tokens that are allowed。"""
    disallowed_special: Union[Literal["all"], Collection[str]] = "all"
    """Set of special tokens that are not allowed。"""

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = {field.alias for field in cls.__fields__.values()}

        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name not in all_required_field_names:
                if field_name in extra:
                    raise ValueError(f"Found {field_name} supplied twice.")
                extra[field_name] = values.pop(field_name)
        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        openai_api_key = get_from_dict_or_env(
            values, "openai_api_key", "OPENAI_API_KEY"
        )
        openai_api_base = get_from_dict_or_env(
            values,
            "openai_api_base",
            "OPENAI_API_BASE",
            default="",
        )
        openai_proxy = get_from_dict_or_env(
            values,
            "openai_proxy",
            "OPENAI_PROXY",
            default="",
        )
        openai_organization = get_from_dict_or_env(
            values, "openai_organization", "OPENAI_ORGANIZATION", default=""
        )
        try:
            import llm

            llm.api_key = openai_api_key
            if openai_api_base:
                llm.api_base = openai_api_base
            if openai_organization:
                llm.organization = openai_organization
            if openai_proxy:
                llm.proxy = {"http": openai_proxy, "https": openai_proxy}  # type: ignore[assignment]  # noqa: E501
        except ImportError:
            raise ImportError(
                "Could not import openai python package. "
                "Please install it with `pip install openai`."
            )
        try:
            values["client"] = llm.ChatCompletion
        except AttributeError:
            raise ValueError(
                "`openai` has no `ChatCompletion` attribute, this is likely "
                "due to an old version of the openai package. Try upgrading it "
                "with `pip install --upgrade openai`."
            )
        warnings.warn(
            "You are trying to use a chat model. This way of initializing it is "
            "no longer supported. Instead, please use: "
            "`from langchain.chat_models import ChatOpenAI`"
        )
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        return self.model_kwargs

    def _get_chat_params(
        self, prompts: List[str], stop: Optional[List[str]] = None
    ) -> Tuple:
        if len(prompts) > 1:
            raise ValueError(
                f"OpenAIChat currently only supports single prompt, got {prompts}"
            )
        messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
        params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
        if stop is not None:
            if "stop" in params:
                raise ValueError("`stop` found in both the input and default params.")
            params["stop"] = stop
        if params.get("max_tokens") == -1:
            # for ChatGPT api, omitting max_tokens is equivalent to having no limit
            del params["max_tokens"]
        return messages, params

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        messages, params = self._get_chat_params([prompt], stop)
        params = {**params, **kwargs, "stream": True}
        for stream_resp in completion_with_retry(
            self, messages=messages, run_manager=run_manager, **params
        ):
            token = stream_resp["choices"][0]["delta"].get("content", "")
            chunk = GenerationChunk(text=token)
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(token, chunk=chunk)

    async def _astream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[GenerationChunk]:
        messages, params = self._get_chat_params([prompt], stop)
        params = {**params, **kwargs, "stream": True}
        async for stream_resp in await acompletion_with_retry(
            self, messages=messages, run_manager=run_manager, **params
        ):
            token = stream_resp["choices"][0]["delta"].get("content", "")
            chunk = GenerationChunk(text=token)
            yield chunk
            if run_manager:
                await run_manager.on_llm_new_token(token, chunk=chunk)

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        if self.streaming:
            generation: Optional[GenerationChunk] = None
            for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
                if generation is None:
                    generation = chunk
                else:
                    generation += chunk
            assert generation is not None
            return LLMResult(generations=[[generation]])

        messages, params = self._get_chat_params(prompts, stop)
        params = {**params, **kwargs}
        full_response = completion_with_retry(
            self, messages=messages, run_manager=run_manager, **params
        )
        llm_output = {
            "token_usage": full_response["usage"],
            "model_name": self.model_name,
        }
        return LLMResult(
            generations=[
                [Generation(text=full_response["choices"][0]["message"]["content"])]
            ],
            llm_output=llm_output,
        )

    async def _agenerate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        if self.streaming:
            generation: Optional[GenerationChunk] = None
            async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
                if generation is None:
                    generation = chunk
                else:
                    generation += chunk
            assert generation is not None
            return LLMResult(generations=[[generation]])

        messages, params = self._get_chat_params(prompts, stop)
        params = {**params, **kwargs}
        full_response = await acompletion_with_retry(
            self, messages=messages, run_manager=run_manager, **params
        )
        llm_output = {
            "token_usage": full_response["usage"],
            "model_name": self.model_name,
        }
        return LLMResult(
            generations=[
                [Generation(text=full_response["choices"][0]["message"]["content"])]
            ],
            llm_output=llm_output,
        )

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {**{"model_name": self.model_name}, **self._default_params}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "openai-chat"

    def get_token_ids(self, text: str) -> List[int]:
        """Get the token IDs using the tiktoken package."""
        # tiktoken NOT supported for Python < 3.8
        if sys.version_info[1] < 8:
            return super().get_token_ids(text)
        try:
            import tiktoken
        except ImportError:
            raise ImportError(
                "Could not import tiktoken python package. "
                "This is needed in order to calculate get_num_tokens. "
                "Please install it with `pip install tiktoken`."
            )

        enc = tiktoken.encoding_for_model(self.model_name)
        return enc.encode(
            text,
            allowed_special=self.allowed_special,
            disallowed_special=self.disallowed_special,
        )