Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
import warnings | |
from typing import ( | |
Any, | |
Callable, | |
Dict, | |
List, | |
Literal, | |
Optional, | |
Sequence, | |
Set, | |
Tuple, | |
Union, | |
) | |
import numpy as np | |
from pydantic import BaseModel, Extra, Field, root_validator | |
from tenacity import ( | |
AsyncRetrying, | |
before_sleep_log, | |
retry, | |
retry_if_exception_type, | |
stop_after_attempt, | |
wait_exponential, | |
) | |
from swarms.embeddings.base import Embeddings | |
def get_from_dict_or_env(values: dict, key: str, env_key: str, default: Any = None) -> Any: | |
import os | |
return values.get(key) or os.getenv(env_key) or default | |
def get_pydantic_field_names(cls: Any) -> Set[str]: | |
return set(cls.__annotations__.keys()) | |
logger = logging.getLogger(__name__) | |
def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]: | |
import llm | |
min_seconds = 4 | |
max_seconds = 10 | |
# Wait 2^x * 1 second between each retry starting with | |
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards | |
return retry( | |
reraise=True, | |
stop=stop_after_attempt(embeddings.max_retries), | |
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), | |
retry=( | |
retry_if_exception_type(llm.error.Timeout) | |
| retry_if_exception_type(llm.error.APIError) | |
| retry_if_exception_type(llm.error.APIConnectionError) | |
| retry_if_exception_type(llm.error.RateLimitError) | |
| retry_if_exception_type(llm.error.ServiceUnavailableError) | |
), | |
before_sleep=before_sleep_log(logger, logging.WARNING), | |
) | |
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any: | |
import llm | |
min_seconds = 4 | |
max_seconds = 10 | |
# Wait 2^x * 1 second between each retry starting with | |
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards | |
async_retrying = AsyncRetrying( | |
reraise=True, | |
stop=stop_after_attempt(embeddings.max_retries), | |
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds), | |
retry=( | |
retry_if_exception_type(llm.error.Timeout) | |
| retry_if_exception_type(llm.error.APIError) | |
| retry_if_exception_type(llm.error.APIConnectionError) | |
| retry_if_exception_type(llm.error.RateLimitError) | |
| retry_if_exception_type(llm.error.ServiceUnavailableError) | |
), | |
before_sleep=before_sleep_log(logger, logging.WARNING), | |
) | |
def wrap(func: Callable) -> Callable: | |
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable: | |
async for _ in async_retrying: | |
return await func(*args, **kwargs) | |
raise AssertionError("this is unreachable") | |
return wrapped_f | |
return wrap | |
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings | |
def _check_response(response: dict) -> dict: | |
if any(len(d["embedding"]) == 1 for d in response["data"]): | |
import llm | |
raise llm.error.APIError("OpenAI API returned an empty embedding") | |
return response | |
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: | |
"""Use tenacity to retry the embedding call.""" | |
retry_decorator = _create_retry_decorator(embeddings) | |
def _embed_with_retry(**kwargs: Any) -> Any: | |
response = embeddings.client.create(**kwargs) | |
return _check_response(response) | |
return _embed_with_retry(**kwargs) | |
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any: | |
"""Use tenacity to retry the embedding call.""" | |
async def _async_embed_with_retry(**kwargs: Any) -> Any: | |
response = await embeddings.client.acreate(**kwargs) | |
return _check_response(response) | |
return await _async_embed_with_retry(**kwargs) | |
class OpenAIEmbeddings(BaseModel, Embeddings): | |
"""OpenAI embedding models. | |
To use, you should have the ``openai`` python package installed, and the | |
environment variable ``OPENAI_API_KEY`` set with your API key or pass it | |
as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain.embeddings import OpenAIEmbeddings | |
openai = OpenAIEmbeddings(openai_api_key="my-api-key") | |
In order to use the library with Microsoft Azure endpoints, you need to set | |
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION. | |
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to | |
the properties of your endpoint. | |
In addition, the deployment name must be passed as the model parameter. | |
Example: | |
.. code-block:: python | |
import os | |
os.environ["OPENAI_API_TYPE"] = "azure" | |
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/" | |
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key" | |
os.environ["OPENAI_API_VERSION"] = "2023-05-15" | |
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080" | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
embeddings = OpenAIEmbeddings( | |
deployment="your-embeddings-deployment-name", | |
model="your-embeddings-model-name", | |
openai_api_base="https://your-endpoint.openai.azure.com/", | |
openai_api_type="azure", | |
) | |
text = "This is a test query." | |
query_result = embeddings.embed_query(text) | |
""" | |
client: Any #: :meta private: | |
model: str = "text-embedding-ada-002" | |
deployment: str = model # to support Azure OpenAI Service custom deployment names | |
openai_api_version: Optional[str] = None | |
# to support Azure OpenAI Service custom endpoints | |
openai_api_base: Optional[str] = None | |
# to support Azure OpenAI Service custom endpoints | |
openai_api_type: Optional[str] = None | |
# to support explicit proxy for OpenAI | |
openai_proxy: Optional[str] = None | |
embedding_ctx_length: int = 8191 | |
"""The maximum number of tokens to embed at once.""" | |
openai_api_key: Optional[str] = None | |
openai_organization: Optional[str] = None | |
allowed_special: Union[Literal["all"], Set[str]] = set() | |
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all" | |
chunk_size: int = 1000 | |
"""Maximum number of texts to embed in each batch""" | |
max_retries: int = 6 | |
"""Maximum number of retries to make when generating.""" | |
request_timeout: Optional[Union[float, Tuple[float, float]]] = None | |
"""Timeout in seconds for the OpenAPI request.""" | |
headers: Any = None | |
tiktoken_model_name: Optional[str] = None | |
"""The model name to pass to tiktoken when using this class. | |
Tiktoken is used to count the number of tokens in documents to constrain | |
them to be under a certain limit. By default, when set to None, this will | |
be the same as the embedding model name. However, there are some cases | |
where you may want to use this Embedding class with a model name not | |
supported by tiktoken. This can include when using Azure embeddings or | |
when using one of the many model providers that expose an OpenAI-like | |
API but with different models. In those cases, in order to avoid erroring | |
when tiktoken is called, you can specify a model name to use here.""" | |
show_progress_bar: bool = False | |
"""Whether to show a progress bar when embedding.""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not explicitly specified.""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = get_pydantic_field_names(cls) | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
if field_name not in all_required_field_names: | |
warnings.warn( | |
f"""WARNING! {field_name} is not default parameter. | |
{field_name} was transferred to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
invalid_model_kwargs = all_required_field_names.intersection(extra.keys()) | |
if invalid_model_kwargs: | |
raise ValueError( | |
f"Parameters {invalid_model_kwargs} should be specified explicitly. " | |
f"Instead they were passed in as part of `model_kwargs` parameter." | |
) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["openai_api_key"] = get_from_dict_or_env( | |
values, "openai_api_key", "OPENAI_API_KEY" | |
) | |
values["openai_api_base"] = get_from_dict_or_env( | |
values, | |
"openai_api_base", | |
"OPENAI_API_BASE", | |
default="", | |
) | |
values["openai_api_type"] = get_from_dict_or_env( | |
values, | |
"openai_api_type", | |
"OPENAI_API_TYPE", | |
default="", | |
) | |
values["openai_proxy"] = get_from_dict_or_env( | |
values, | |
"openai_proxy", | |
"OPENAI_PROXY", | |
default="", | |
) | |
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"): | |
default_api_version = "2022-12-01" | |
else: | |
default_api_version = "" | |
values["openai_api_version"] = get_from_dict_or_env( | |
values, | |
"openai_api_version", | |
"OPENAI_API_VERSION", | |
default=default_api_version, | |
) | |
values["openai_organization"] = get_from_dict_or_env( | |
values, | |
"openai_organization", | |
"OPENAI_ORGANIZATION", | |
default="", | |
) | |
try: | |
import llm | |
values["client"] = llm.Embedding | |
except ImportError: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`." | |
) | |
return values | |
def _invocation_params(self) -> Dict: | |
openai_args = { | |
"model": self.model, | |
"request_timeout": self.request_timeout, | |
"headers": self.headers, | |
"api_key": self.openai_api_key, | |
"organization": self.openai_organization, | |
"api_base": self.openai_api_base, | |
"api_type": self.openai_api_type, | |
"api_version": self.openai_api_version, | |
**self.model_kwargs, | |
} | |
if self.openai_api_type in ("azure", "azure_ad", "azuread"): | |
openai_args["engine"] = self.deployment | |
if self.openai_proxy: | |
import llm | |
llm.proxy = { | |
"http": self.openai_proxy, | |
"https": self.openai_proxy, | |
} # type: ignore[assignment] # noqa: E501 | |
return openai_args | |
def _get_len_safe_embeddings( | |
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None | |
) -> List[List[float]]: | |
embeddings: List[List[float]] = [[] for _ in range(len(texts))] | |
try: | |
import tiktoken | |
except ImportError: | |
raise ImportError( | |
"Could not import tiktoken python package. " | |
"This is needed in order to for OpenAIEmbeddings. " | |
"Please install it with `pip install tiktoken`." | |
) | |
tokens = [] | |
indices = [] | |
model_name = self.tiktoken_model_name or self.model | |
try: | |
encoding = tiktoken.encoding_for_model(model_name) | |
except KeyError: | |
logger.warning("Warning: model not found. Using cl100k_base encoding.") | |
model = "cl100k_base" | |
encoding = tiktoken.get_encoding(model) | |
for i, text in enumerate(texts): | |
if self.model.endswith("001"): | |
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 | |
# replace newlines, which can negatively affect performance. | |
text = text.replace("\n", " ") | |
token = encoding.encode( | |
text, | |
allowed_special=self.allowed_special, | |
disallowed_special=self.disallowed_special, | |
) | |
for j in range(0, len(token), self.embedding_ctx_length): | |
tokens.append(token[j : j + self.embedding_ctx_length]) | |
indices.append(i) | |
batched_embeddings: List[List[float]] = [] | |
_chunk_size = chunk_size or self.chunk_size | |
if self.show_progress_bar: | |
try: | |
import tqdm | |
_iter = tqdm.tqdm(range(0, len(tokens), _chunk_size)) | |
except ImportError: | |
_iter = range(0, len(tokens), _chunk_size) | |
else: | |
_iter = range(0, len(tokens), _chunk_size) | |
for i in _iter: | |
response = embed_with_retry( | |
self, | |
input=tokens[i : i + _chunk_size], | |
**self._invocation_params, | |
) | |
batched_embeddings.extend(r["embedding"] for r in response["data"]) | |
results: List[List[List[float]]] = [[] for _ in range(len(texts))] | |
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] | |
for i in range(len(indices)): | |
results[indices[i]].append(batched_embeddings[i]) | |
num_tokens_in_batch[indices[i]].append(len(tokens[i])) | |
for i in range(len(texts)): | |
_result = results[i] | |
if len(_result) == 0: | |
average = embed_with_retry( | |
self, | |
input="", | |
**self._invocation_params, | |
)[ | |
"data" | |
][0]["embedding"] | |
else: | |
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) | |
embeddings[i] = (average / np.linalg.norm(average)).tolist() | |
return embeddings | |
# please refer to | |
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb | |
async def _aget_len_safe_embeddings( | |
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None | |
) -> List[List[float]]: | |
embeddings: List[List[float]] = [[] for _ in range(len(texts))] | |
try: | |
import tiktoken | |
except ImportError: | |
raise ImportError( | |
"Could not import tiktoken python package. " | |
"This is needed in order to for OpenAIEmbeddings. " | |
"Please install it with `pip install tiktoken`." | |
) | |
tokens = [] | |
indices = [] | |
model_name = self.tiktoken_model_name or self.model | |
try: | |
encoding = tiktoken.encoding_for_model(model_name) | |
except KeyError: | |
logger.warning("Warning: model not found. Using cl100k_base encoding.") | |
model = "cl100k_base" | |
encoding = tiktoken.get_encoding(model) | |
for i, text in enumerate(texts): | |
if self.model.endswith("001"): | |
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 | |
# replace newlines, which can negatively affect performance. | |
text = text.replace("\n", " ") | |
token = encoding.encode( | |
text, | |
allowed_special=self.allowed_special, | |
disallowed_special=self.disallowed_special, | |
) | |
for j in range(0, len(token), self.embedding_ctx_length): | |
tokens.append(token[j : j + self.embedding_ctx_length]) | |
indices.append(i) | |
batched_embeddings: List[List[float]] = [] | |
_chunk_size = chunk_size or self.chunk_size | |
for i in range(0, len(tokens), _chunk_size): | |
response = await async_embed_with_retry( | |
self, | |
input=tokens[i : i + _chunk_size], | |
**self._invocation_params, | |
) | |
batched_embeddings.extend(r["embedding"] for r in response["data"]) | |
results: List[List[List[float]]] = [[] for _ in range(len(texts))] | |
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))] | |
for i in range(len(indices)): | |
results[indices[i]].append(batched_embeddings[i]) | |
num_tokens_in_batch[indices[i]].append(len(tokens[i])) | |
for i in range(len(texts)): | |
_result = results[i] | |
if len(_result) == 0: | |
average = ( | |
await async_embed_with_retry( | |
self, | |
input="", | |
**self._invocation_params, | |
) | |
)["data"][0]["embedding"] | |
else: | |
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i]) | |
embeddings[i] = (average / np.linalg.norm(average)).tolist() | |
return embeddings | |
def embed_documents( | |
self, texts: List[str], chunk_size: Optional[int] = 0 | |
) -> List[List[float]]: | |
"""Call out to OpenAI's embedding endpoint for embedding search docs. | |
Args: | |
texts: The list of texts to embed. | |
chunk_size: The chunk size of embeddings. If None, will use the chunk size | |
specified by the class. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
# NOTE: to keep things simple, we assume the list may contain texts longer | |
# than the maximum context and use length-safe embedding function. | |
return self._get_len_safe_embeddings(texts, engine=self.deployment) | |
async def aembed_documents( | |
self, texts: List[str], chunk_size: Optional[int] = 0 | |
) -> List[List[float]]: | |
"""Call out to OpenAI's embedding endpoint async for embedding search docs. | |
Args: | |
texts: The list of texts to embed. | |
chunk_size: The chunk size of embeddings. If None, will use the chunk size | |
specified by the class. | |
Returns: | |
List of embeddings, one for each text. | |
""" | |
# NOTE: to keep things simple, we assume the list may contain texts longer | |
# than the maximum context and use length-safe embedding function. | |
return await self._aget_len_safe_embeddings(texts, engine=self.deployment) | |
def embed_query(self, text: str) -> List[float]: | |
"""Call out to OpenAI's embedding endpoint for embedding query text. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embedding for the text. | |
""" | |
return self.embed_documents([text])[0] | |
async def aembed_query(self, text: str) -> List[float]: | |
"""Call out to OpenAI's embedding endpoint async for embedding query text. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embedding for the text. | |
""" | |
embeddings = await self.aembed_documents([text]) | |
return embeddings[0] |