Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import logging | |
from typing import Any, Callable, Dict, List, Optional | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from langchain.llms import BaseLLM | |
from langchain.pydantic_v1 import BaseModel, root_validator | |
from langchain.schema import Generation, LLMResult | |
from langchain.utils import get_from_dict_or_env | |
from tenacity import ( | |
before_sleep_log, | |
retry, | |
retry_if_exception_type, | |
stop_after_attempt, | |
wait_exponential, | |
) | |
logger = logging.getLogger(__name__) | |
def _create_retry_decorator() -> Callable[[Any], Any]: | |
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions""" | |
try: | |
import google.api_core.exceptions | |
except ImportError: | |
raise ImportError( | |
"Could not import google-api-core python package. " | |
"Please install it with `pip install google-api-core`." | |
) | |
multiplier = 2 | |
min_seconds = 1 | |
max_seconds = 60 | |
max_retries = 10 | |
return retry( | |
reraise=True, | |
stop=stop_after_attempt(max_retries), | |
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), | |
retry=( | |
retry_if_exception_type(google.api_core.exceptions.ResourceExhausted) | |
| retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable) | |
| retry_if_exception_type(google.api_core.exceptions.GoogleAPIError) | |
), | |
before_sleep=before_sleep_log(logger, logging.WARNING), | |
) | |
def generate_with_retry(llm: GooglePalm, **kwargs: Any) -> Any: | |
"""Use tenacity to retry the completion call.""" | |
retry_decorator = _create_retry_decorator() | |
def _generate_with_retry(**kwargs: Any) -> Any: | |
return llm.client.generate_text(**kwargs) | |
return _generate_with_retry(**kwargs) | |
def _strip_erroneous_leading_spaces(text: str) -> str: | |
"""Strip erroneous leading spaces from text. | |
The PaLM API will sometimes erroneously return a single leading space in all | |
lines > 1. This function strips that space. | |
""" | |
has_leading_space = all(not line or line[0] == " " for line in text.split("\n")[1:]) | |
if has_leading_space: | |
return text.replace("\n ", "\n") | |
else: | |
return text | |
class GooglePalm(BaseLLM, BaseModel): | |
"""Google PaLM models.""" | |
client: Any #: :meta private: | |
google_api_key: Optional[str] | |
model_name: str = "models/text-bison-001" | |
"""Model name to use.""" | |
temperature: float = 0.7 | |
"""Run inference with this temperature. Must by in the closed interval | |
[0.0, 1.0].""" | |
top_p: Optional[float] = None | |
"""Decode using nucleus sampling: consider the smallest set of tokens whose | |
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0].""" | |
top_k: Optional[int] = None | |
"""Decode using top-k sampling: consider the set of top_k most probable tokens. | |
Must be positive.""" | |
max_output_tokens: Optional[int] = None | |
"""Maximum number of tokens to include in a candidate. Must be greater than zero. | |
If unset, will default to 64.""" | |
n: int = 1 | |
"""Number of chat completions to generate for each prompt. Note that the API may | |
not return the full n completions if duplicates are generated.""" | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate api key, python package exists.""" | |
google_api_key = get_from_dict_or_env( | |
values, "google_api_key", "GOOGLE_API_KEY" | |
) | |
try: | |
import google.generativeai as genai | |
genai.configure(api_key=google_api_key) | |
except ImportError: | |
raise ImportError( | |
"Could not import google-generativeai python package. " | |
"Please install it with `pip install google-generativeai`." | |
) | |
values["client"] = genai | |
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1: | |
raise ValueError("temperature must be in the range [0.0, 1.0]") | |
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1: | |
raise ValueError("top_p must be in the range [0.0, 1.0]") | |
if values["top_k"] is not None and values["top_k"] <= 0: | |
raise ValueError("top_k must be positive") | |
if values["max_output_tokens"] is not None and values["max_output_tokens"] <= 0: | |
raise ValueError("max_output_tokens must be greater than zero") | |
return values | |
def _generate( | |
self, | |
prompts: List[str], | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> LLMResult: | |
generations = [] | |
for prompt in prompts: | |
completion = generate_with_retry( | |
self, | |
model=self.model_name, | |
prompt=prompt, | |
stop_sequences=stop, | |
temperature=self.temperature, | |
top_p=self.top_p, | |
top_k=self.top_k, | |
max_output_tokens=self.max_output_tokens, | |
candidate_count=self.n, | |
**kwargs, | |
) | |
prompt_generations = [] | |
for candidate in completion.candidates: | |
raw_text = candidate["output"] | |
stripped_text = _strip_erroneous_leading_spaces(raw_text) | |
prompt_generations.append(Generation(text=stripped_text)) | |
generations.append(prompt_generations) | |
return LLMResult(generations=generations) | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "google_palm" |