omni_bot / swarms /tools /mm_models.py
WAWAA's picture
Upload folder using huggingface_hub
4962437
raw
history blame
10.6 kB
import os
import uuid
import numpy as np
import torch
from diffusers import (
EulerAncestralDiscreteScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionInstructPix2PixPipeline,
StableDiffusionPipeline,
)
from PIL import Image
from transformers import (
BlipForConditionalGeneration,
BlipForQuestionAnswering,
BlipProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
)
from swarms.models.prompts.prebuild.multi_modal_prompts import IMAGE_PROMPT
from swarms.tools.base import tool
from swarms.tools.main import BaseToolSet
from swarms.utils.logger import logger
from swarms.utils.main import BaseHandler, get_new_image_name
class MaskFormer(BaseToolSet):
def __init__(self, device):
print("Initializing MaskFormer to %s" % device)
self.device = device
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained(
"CIDAS/clipseg-rd64-refined"
).to(device)
def inference(self, image_path, text):
threshold = 0.5
min_area = 0.02
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(
text=text, images=image, padding="max_length", return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
if area_ratio < min_area:
return None
true_indices = np.argwhere(mask)
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(
slice(max(0, i - padding), i + padding + 1) for i in idx
)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
return image_mask.resize(original_image.size)
class ImageEditing(BaseToolSet):
def __init__(self, device):
print("Initializing ImageEditing to %s" % device)
self.device = device
self.mask_former = MaskFormer(device=self.device)
self.revision = "fp16" if "cuda" in device else None
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision=self.revision,
torch_dtype=self.torch_dtype,
).to(device)
@tool(
name="Remove Something From The Photo",
description="useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. ",
)
def inference_remove(self, inputs):
image_path, to_be_removed_txt = inputs.split(",")
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
@tool(
name="Replace Something From The Photo",
description="useful when you want to replace an object from the object description or "
"location with another object from its description. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, the object to be replaced, the object to be replaced with ",
)
def inference_replace(self, inputs):
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
original_image = Image.open(image_path)
original_size = original_image.size
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
updated_image = self.inpaint(
prompt=replace_with_txt,
image=original_image.resize((512, 512)),
mask_image=mask_image.resize((512, 512)),
).images[0]
updated_image_path = get_new_image_name(
image_path, func_name="replace-something"
)
updated_image = updated_image.resize(original_size)
updated_image.save(updated_image_path)
logger.debug(
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
f"Output Image: {updated_image_path}"
)
return updated_image_path
class InstructPix2Pix(BaseToolSet):
def __init__(self, device):
print("Initializing InstructPix2Pix to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix",
safety_checker=None,
torch_dtype=self.torch_dtype,
).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
@tool(
name="Instruct Image Using Text",
description="useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. ",
)
def inference(self, inputs):
"""Change style of image."""
logger.debug("===> Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ",".join(inputs.split(",")[1:])
original_image = Image.open(image_path)
image = self.pipe(
text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2
).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
logger.debug(
f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
f"Output Image: {updated_image_path}"
)
return updated_image_path
class Text2Image(BaseToolSet):
def __init__(self, device):
print("Initializing Text2Image to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=self.torch_dtype
)
self.pipe.to(device)
self.a_prompt = "best quality, extremely detailed"
self.n_prompt = (
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, "
"fewer digits, cropped, worst quality, low quality"
)
@tool(
name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ",
)
def inference(self, text):
image_filename = os.path.join("image", str(uuid.uuid4())[0:8] + ".png")
prompt = text + ", " + self.a_prompt
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
image.save(image_filename)
logger.debug(
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}"
)
return image_filename
class VisualQuestionAnswering(BaseToolSet):
def __init__(self, device):
print("Initializing VisualQuestionAnswering to %s" % device)
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype
).to(self.device)
@tool(
name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
"The input to this tool should be a comma separated string of two, representing the image_path and the question",
)
def inference(self, inputs):
image_path, question = inputs.split(",")
raw_image = Image.open(image_path).convert("RGB")
inputs = self.processor(raw_image, question, return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
logger.debug(
f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
f"Output Answer: {answer}"
)
return answer
class ImageCaptioning(BaseHandler):
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
).to(self.device)
def handle(self, filename: str):
img = Image.open(filename)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert("RGB")
img.save(filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
inputs = self.processor(Image.open(filename), return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
description = self.processor.decode(out[0], skip_special_tokens=True)
print(
f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}"
)
return IMAGE_PROMPT.format(filename=filename, description=description)