This example demonstrates how to build an agent that can dynamically query Amazon Redshift Serverless tables and store its contents on the local hard drive. Let's build a support agent that uses GPT-4: ```python import boto3 from swarms.drivers import AmazonRedshiftSqlDriver, OpenAiPromptDriver from swarms.loaders import SqlLoader from swarms.rules import Ruleset, Rule from swarms.structures import Agent from swarms.tools import SqlClient, FileManager from swarms.utils import Chat session = boto3.Session(region_name="REGION_NAME") sql_loader = SqlLoader( sql_driver=AmazonRedshiftSqlDriver( database="DATABASE", session=session, workgroup_name="WORKGROUP_NAME" ) ) sql_tool = SqlClient( sql_loader=sql_loader, table_name="people", table_description="contains information about tech industry professionals", engine_name="redshift" ) agent = Agent( tools=[sql_tool, FileManager())], rulesets=[ Ruleset( name="HumansOrg Agent", rules=[ Rule("Act and introduce yourself as a HumansOrg, Inc. support agent"), Rule("Your main objective is to help with finding information about people"), Rule("Only use information about people from the sources available to you") ] ) ] ) Chat(agent).start() ```