Spaces:
Runtime error
Runtime error
File size: 38,017 Bytes
da3eeba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import argparse
# import math
import gc
import os
import platform
if platform.system() == "Darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
if platform.system() == "Windows":
os.environ["XFORMERS_FORCE_DISABLE_TRITON"] = "1"
import random
import traceback
from importlib.util import find_spec
import cv2
import gradio as gr
import numpy as np
import torch
from diffusers import (DDIMScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler,
StableDiffusionInpaintPipeline)
from PIL import Image, ImageFilter
from PIL.PngImagePlugin import PngInfo
from torch.hub import download_url_to_file
from torchvision import transforms
import inpalib
from ia_check_versions import ia_check_versions
from ia_config import IAConfig, get_ia_config_index, set_ia_config, setup_ia_config_ini
from ia_devices import devices
from ia_file_manager import IAFileManager, download_model_from_hf, ia_file_manager
from ia_logging import ia_logging
from ia_threading import clear_cache_decorator
from ia_ui_gradio import reload_javascript
from ia_ui_items import (get_cleaner_model_ids, get_inp_model_ids, get_padding_mode_names,
get_sam_model_ids, get_sampler_names)
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
print("platform:", platform.system())
reload_javascript()
if find_spec("xformers") is not None:
xformers_available = True
else:
xformers_available = False
parser = argparse.ArgumentParser(description="Inpaint Anything")
parser.add_argument("--save-seg", action="store_true", help="Save the segmentation image generated by SAM.")
parser.add_argument("--offline", action="store_true", help="Execute inpainting using an offline network.")
parser.add_argument("--sam-cpu", action="store_true", help="Perform the Segment Anything operation on CPU.")
args = parser.parse_args()
IAConfig.global_args.update(args.__dict__)
@clear_cache_decorator
def download_model(sam_model_id):
"""Download SAM model.
Args:
sam_model_id (str): SAM model id
Returns:
str: download status
"""
if "_hq_" in sam_model_id:
url_sam = "https://huggingface.co/Uminosachi/sam-hq/resolve/main/" + sam_model_id
elif "FastSAM" in sam_model_id:
url_sam = "https://huggingface.co/Uminosachi/FastSAM/resolve/main/" + sam_model_id
elif "mobile_sam" in sam_model_id:
url_sam = "https://huggingface.co/Uminosachi/MobileSAM/resolve/main/" + sam_model_id
elif "sam2_" in sam_model_id:
url_sam = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/" + sam_model_id
else:
url_sam = "https://dl.fbaipublicfiles.com/segment_anything/" + sam_model_id
sam_checkpoint = os.path.join(ia_file_manager.models_dir, sam_model_id)
if not os.path.isfile(sam_checkpoint):
try:
download_url_to_file(url_sam, sam_checkpoint)
except Exception as e:
ia_logging.error(str(e))
return str(e)
return IAFileManager.DOWNLOAD_COMPLETE
else:
return "Model already exists"
sam_dict = dict(sam_masks=None, mask_image=None, cnet=None, orig_image=None, pad_mask=None)
def save_mask_image(mask_image, save_mask_chk=False):
"""Save mask image.
Args:
mask_image (np.ndarray): mask image
save_mask_chk (bool, optional): If True, save mask image. Defaults to False.
Returns:
None
"""
if save_mask_chk:
save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
Image.fromarray(mask_image).save(save_name)
@clear_cache_decorator
def input_image_upload(input_image, sam_image, sel_mask):
global sam_dict
sam_dict["orig_image"] = input_image
sam_dict["pad_mask"] = None
if (sam_dict["mask_image"] is None or not isinstance(sam_dict["mask_image"], np.ndarray) or
sam_dict["mask_image"].shape != input_image.shape):
sam_dict["mask_image"] = np.zeros_like(input_image, dtype=np.uint8)
ret_sel_image = cv2.addWeighted(input_image, 0.5, sam_dict["mask_image"], 0.5, 0)
if sam_image is None or not isinstance(sam_image, dict) or "image" not in sam_image:
sam_dict["sam_masks"] = None
ret_sam_image = np.zeros_like(input_image, dtype=np.uint8)
elif sam_image["image"].shape == input_image.shape:
ret_sam_image = gr.update()
else:
sam_dict["sam_masks"] = None
ret_sam_image = gr.update(value=np.zeros_like(input_image, dtype=np.uint8))
if sel_mask is None or not isinstance(sel_mask, dict) or "image" not in sel_mask:
ret_sel_mask = ret_sel_image
elif sel_mask["image"].shape == ret_sel_image.shape and np.all(sel_mask["image"] == ret_sel_image):
ret_sel_mask = gr.update()
else:
ret_sel_mask = gr.update(value=ret_sel_image)
return ret_sam_image, ret_sel_mask, gr.update(interactive=True)
@clear_cache_decorator
def run_padding(input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode="edge"):
global sam_dict
if input_image is None or sam_dict["orig_image"] is None:
sam_dict["orig_image"] = None
sam_dict["pad_mask"] = None
return None, "Input image not found"
orig_image = sam_dict["orig_image"]
height, width = orig_image.shape[:2]
pad_width, pad_height = (int(width * pad_scale_width), int(height * pad_scale_height))
ia_logging.info(f"resize by padding: ({height}, {width}) -> ({pad_height}, {pad_width})")
pad_size_w, pad_size_h = (pad_width - width, pad_height - height)
pad_size_l = int(pad_size_w * pad_lr_barance)
pad_size_r = pad_size_w - pad_size_l
pad_size_t = int(pad_size_h * pad_tb_barance)
pad_size_b = pad_size_h - pad_size_t
pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r), (0, 0)]
if padding_mode == "constant":
fill_value = 127
pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode, constant_values=fill_value)
else:
pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode)
mask_pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r)]
pad_mask = np.zeros((height, width), dtype=np.uint8)
pad_mask = np.pad(pad_mask, pad_width=mask_pad_width, mode="constant", constant_values=255)
sam_dict["pad_mask"] = dict(segmentation=pad_mask.astype(bool))
return pad_image, "Padding done"
@clear_cache_decorator
def run_sam(input_image, sam_model_id, sam_image, anime_style_chk=False):
global sam_dict
if not inpalib.sam_file_exists(sam_model_id):
ret_sam_image = None if sam_image is None else gr.update()
return ret_sam_image, f"{sam_model_id} not found, please download"
if input_image is None:
ret_sam_image = None if sam_image is None else gr.update()
return ret_sam_image, "Input image not found"
set_ia_config(IAConfig.KEYS.SAM_MODEL_ID, sam_model_id, IAConfig.SECTIONS.USER)
if sam_dict["sam_masks"] is not None:
sam_dict["sam_masks"] = None
gc.collect()
ia_logging.info(f"input_image: {input_image.shape} {input_image.dtype}")
try:
sam_masks = inpalib.generate_sam_masks(input_image, sam_model_id, anime_style_chk)
sam_masks = inpalib.sort_masks_by_area(sam_masks)
sam_masks = inpalib.insert_mask_to_sam_masks(sam_masks, sam_dict["pad_mask"])
seg_image = inpalib.create_seg_color_image(input_image, sam_masks)
sam_dict["sam_masks"] = sam_masks
except Exception as e:
print(traceback.format_exc())
ia_logging.error(str(e))
ret_sam_image = None if sam_image is None else gr.update()
return ret_sam_image, "Segment Anything failed"
if IAConfig.global_args.get("save_seg", False):
save_name = "_".join([ia_file_manager.savename_prefix, os.path.splitext(sam_model_id)[0]]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
Image.fromarray(seg_image).save(save_name)
if sam_image is None:
return seg_image, "Segment Anything complete"
else:
if sam_image["image"].shape == seg_image.shape and np.all(sam_image["image"] == seg_image):
return gr.update(), "Segment Anything complete"
else:
return gr.update(value=seg_image), "Segment Anything complete"
@clear_cache_decorator
def select_mask(input_image, sam_image, invert_chk, ignore_black_chk, sel_mask):
global sam_dict
if sam_dict["sam_masks"] is None or sam_image is None:
ret_sel_mask = None if sel_mask is None else gr.update()
return ret_sel_mask
sam_masks = sam_dict["sam_masks"]
# image = sam_image["image"]
mask = sam_image["mask"][:, :, 0:1]
try:
seg_image = inpalib.create_mask_image(mask, sam_masks, ignore_black_chk)
if invert_chk:
seg_image = inpalib.invert_mask(seg_image)
sam_dict["mask_image"] = seg_image
except Exception as e:
print(traceback.format_exc())
ia_logging.error(str(e))
ret_sel_mask = None if sel_mask is None else gr.update()
return ret_sel_mask
if input_image is not None and input_image.shape == seg_image.shape:
ret_image = cv2.addWeighted(input_image, 0.5, seg_image, 0.5, 0)
else:
ret_image = seg_image
if sel_mask is None:
return ret_image
else:
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
@clear_cache_decorator
def expand_mask(input_image, sel_mask, expand_iteration=1):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
new_sel_mask = sam_dict["mask_image"]
expand_iteration = int(np.clip(expand_iteration, 1, 100))
new_sel_mask = cv2.dilate(new_sel_mask, np.ones((3, 3), dtype=np.uint8), iterations=expand_iteration)
sam_dict["mask_image"] = new_sel_mask
if input_image is not None and input_image.shape == new_sel_mask.shape:
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0)
else:
ret_image = new_sel_mask
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
@clear_cache_decorator
def apply_mask(input_image, sel_mask):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
sel_mask_image = sam_dict["mask_image"]
sel_mask_mask = np.logical_not(sel_mask["mask"][:, :, 0:3].astype(bool)).astype(np.uint8)
new_sel_mask = sel_mask_image * sel_mask_mask
sam_dict["mask_image"] = new_sel_mask
if input_image is not None and input_image.shape == new_sel_mask.shape:
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0)
else:
ret_image = new_sel_mask
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
@clear_cache_decorator
def add_mask(input_image, sel_mask):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
sel_mask_image = sam_dict["mask_image"]
sel_mask_mask = sel_mask["mask"][:, :, 0:3].astype(bool).astype(np.uint8)
new_sel_mask = sel_mask_image + (sel_mask_mask * np.invert(sel_mask_image, dtype=np.uint8))
sam_dict["mask_image"] = new_sel_mask
if input_image is not None and input_image.shape == new_sel_mask.shape:
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0)
else:
ret_image = new_sel_mask
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
def auto_resize_to_pil(input_image, mask_image):
init_image = Image.fromarray(input_image).convert("RGB")
mask_image = Image.fromarray(mask_image).convert("RGB")
assert init_image.size == mask_image.size, "The sizes of the image and mask do not match"
width, height = init_image.size
new_height = (height // 8) * 8
new_width = (width // 8) * 8
if new_width < width or new_height < height:
if (new_width / width) < (new_height / height):
scale = new_height / height
else:
scale = new_width / width
resize_height = int(height*scale+0.5)
resize_width = int(width*scale+0.5)
if height != resize_height or width != resize_width:
ia_logging.info(f"resize: ({height}, {width}) -> ({resize_height}, {resize_width})")
init_image = transforms.functional.resize(init_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS)
mask_image = transforms.functional.resize(mask_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS)
if resize_height != new_height or resize_width != new_width:
ia_logging.info(f"center_crop: ({resize_height}, {resize_width}) -> ({new_height}, {new_width})")
init_image = transforms.functional.center_crop(init_image, (new_height, new_width))
mask_image = transforms.functional.center_crop(mask_image, (new_height, new_width))
return init_image, mask_image
@clear_cache_decorator
def run_inpaint(input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk,
sampler_name="DDIM", iteration_count=1):
global sam_dict
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None:
ia_logging.error("The image or mask does not exist")
return
mask_image = sam_dict["mask_image"]
if input_image.shape != mask_image.shape:
ia_logging.error("The sizes of the image and mask do not match")
return
set_ia_config(IAConfig.KEYS.INP_MODEL_ID, inp_model_id, IAConfig.SECTIONS.USER)
save_mask_image(mask_image, save_mask_chk)
ia_logging.info(f"Loading model {inp_model_id}")
config_offline_inpainting = IAConfig.global_args.get("offline", False)
if config_offline_inpainting:
ia_logging.info("Run Inpainting on offline network: {}".format(str(config_offline_inpainting)))
local_files_only = False
local_file_status = download_model_from_hf(inp_model_id, local_files_only=True)
if local_file_status != IAFileManager.DOWNLOAD_COMPLETE:
if config_offline_inpainting:
ia_logging.warning(local_file_status)
return
else:
local_files_only = True
ia_logging.info("local_files_only: {}".format(str(local_files_only)))
if platform.system() == "Darwin" or devices.device == devices.cpu or ia_check_versions.torch_on_amd_rocm:
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
try:
pipe = StableDiffusionInpaintPipeline.from_pretrained(
inp_model_id, torch_dtype=torch_dtype, local_files_only=local_files_only, use_safetensors=True)
except Exception as e:
ia_logging.error(str(e))
if not config_offline_inpainting:
try:
pipe = StableDiffusionInpaintPipeline.from_pretrained(
inp_model_id, torch_dtype=torch_dtype, use_safetensors=True)
except Exception as e:
ia_logging.error(str(e))
try:
pipe = StableDiffusionInpaintPipeline.from_pretrained(
inp_model_id, torch_dtype=torch_dtype, force_download=True, use_safetensors=True)
except Exception as e:
ia_logging.error(str(e))
return
else:
return
pipe.safety_checker = None
ia_logging.info(f"Using sampler {sampler_name}")
if sampler_name == "DDIM":
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "Euler a":
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "DPM2 Karras":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "DPM2 a Karras":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
else:
ia_logging.info("Sampler fallback to DDIM")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
if platform.system() == "Darwin":
pipe = pipe.to("mps" if ia_check_versions.torch_mps_is_available else "cpu")
pipe.enable_attention_slicing()
torch_generator = torch.Generator(devices.cpu)
else:
if ia_check_versions.diffusers_enable_cpu_offload and devices.device != devices.cpu:
ia_logging.info("Enable model cpu offload")
pipe.enable_model_cpu_offload()
else:
pipe = pipe.to(devices.device)
if xformers_available:
ia_logging.info("Enable xformers memory efficient attention")
pipe.enable_xformers_memory_efficient_attention()
else:
ia_logging.info("Enable attention slicing")
pipe.enable_attention_slicing()
if "privateuseone" in str(getattr(devices.device, "type", "")):
torch_generator = torch.Generator(devices.cpu)
else:
torch_generator = torch.Generator(devices.device)
init_image, mask_image = auto_resize_to_pil(input_image, mask_image)
width, height = init_image.size
output_list = []
iteration_count = iteration_count if iteration_count is not None else 1
for count in range(int(iteration_count)):
gc.collect()
if seed < 0 or count > 0:
seed = random.randint(0, 2147483647)
generator = torch_generator.manual_seed(seed)
pipe_args_dict = {
"prompt": prompt,
"image": init_image,
"width": width,
"height": height,
"mask_image": mask_image,
"num_inference_steps": ddim_steps,
"guidance_scale": cfg_scale,
"negative_prompt": n_prompt,
"generator": generator,
}
output_image = pipe(**pipe_args_dict).images[0]
if composite_chk:
dilate_mask_image = Image.fromarray(cv2.dilate(np.array(mask_image), np.ones((3, 3), dtype=np.uint8), iterations=4))
output_image = Image.composite(output_image, init_image, dilate_mask_image.convert("L").filter(ImageFilter.GaussianBlur(3)))
generation_params = {
"Steps": ddim_steps,
"Sampler": sampler_name,
"CFG scale": cfg_scale,
"Seed": seed,
"Size": f"{width}x{height}",
"Model": inp_model_id,
}
generation_params_text = ", ".join([k if k == v else f"{k}: {v}" for k, v in generation_params.items() if v is not None])
prompt_text = prompt if prompt else ""
negative_prompt_text = "\nNegative prompt: " + n_prompt if n_prompt else ""
infotext = f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
metadata = PngInfo()
metadata.add_text("parameters", infotext)
save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(inp_model_id), str(seed)]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
output_image.save(save_name, pnginfo=metadata)
output_list.append(output_image)
yield output_list, max([1, iteration_count - (count + 1)])
@clear_cache_decorator
def run_cleaner(input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk):
global sam_dict
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None:
ia_logging.error("The image or mask does not exist")
return None
mask_image = sam_dict["mask_image"]
if input_image.shape != mask_image.shape:
ia_logging.error("The sizes of the image and mask do not match")
return None
save_mask_image(mask_image, cleaner_save_mask_chk)
ia_logging.info(f"Loading model {cleaner_model_id}")
if platform.system() == "Darwin":
model = ModelManager(name=cleaner_model_id, device=devices.cpu)
else:
model = ModelManager(name=cleaner_model_id, device=devices.device)
init_image, mask_image = auto_resize_to_pil(input_image, mask_image)
width, height = init_image.size
init_image = np.array(init_image)
mask_image = np.array(mask_image.convert("L"))
config = Config(
ldm_steps=20,
ldm_sampler=LDMSampler.ddim,
hd_strategy=HDStrategy.ORIGINAL,
hd_strategy_crop_margin=32,
hd_strategy_crop_trigger_size=512,
hd_strategy_resize_limit=512,
prompt="",
sd_steps=20,
sd_sampler=SDSampler.ddim
)
output_image = model(image=init_image, mask=mask_image, config=config)
output_image = cv2.cvtColor(output_image.astype(np.uint8), cv2.COLOR_BGR2RGB)
output_image = Image.fromarray(output_image)
save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(cleaner_model_id)]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
output_image.save(save_name)
del model
return [output_image]
@clear_cache_decorator
def run_get_alpha_image(input_image, sel_mask):
global sam_dict
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None:
ia_logging.error("The image or mask does not exist")
return None, ""
mask_image = sam_dict["mask_image"]
if input_image.shape != mask_image.shape:
ia_logging.error("The sizes of the image and mask do not match")
return None, ""
alpha_image = Image.fromarray(input_image).convert("RGBA")
mask_image = Image.fromarray(mask_image).convert("L")
alpha_image.putalpha(mask_image)
save_name = "_".join([ia_file_manager.savename_prefix, "rgba_image"]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
alpha_image.save(save_name)
return alpha_image, f"saved: {save_name}"
@clear_cache_decorator
def run_get_mask(sel_mask):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
mask_image = sam_dict["mask_image"]
save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
Image.fromarray(mask_image).save(save_name)
return mask_image
def on_ui_tabs():
setup_ia_config_ini()
sampler_names = get_sampler_names()
sam_model_ids = get_sam_model_ids()
sam_model_index = get_ia_config_index(IAConfig.KEYS.SAM_MODEL_ID, IAConfig.SECTIONS.USER)
inp_model_ids = get_inp_model_ids()
inp_model_index = get_ia_config_index(IAConfig.KEYS.INP_MODEL_ID, IAConfig.SECTIONS.USER)
cleaner_model_ids = get_cleaner_model_ids()
padding_mode_names = get_padding_mode_names()
out_gallery_kwargs = dict(columns=2, height=520, object_fit="contain", preview=True)
block = gr.Blocks(analytics_enabled=False).queue()
block.title = "Inpaint Anything"
with block as inpaint_anything_interface:
with gr.Row():
gr.Markdown("## Inpainting with Segment Anything")
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
sam_model_id = gr.Dropdown(label="Segment Anything Model ID", elem_id="sam_model_id", choices=sam_model_ids,
value=sam_model_ids[sam_model_index], show_label=True)
with gr.Column():
with gr.Row():
load_model_btn = gr.Button("Download model", elem_id="load_model_btn")
with gr.Row():
status_text = gr.Textbox(label="", elem_id="status_text", max_lines=1, show_label=False, interactive=False)
with gr.Row():
input_image = gr.Image(label="Input image", elem_id="ia_input_image", source="upload", type="numpy", interactive=True)
with gr.Row():
with gr.Accordion("Padding options", elem_id="padding_options", open=False):
with gr.Row():
with gr.Column():
pad_scale_width = gr.Slider(label="Scale Width", elem_id="pad_scale_width", minimum=1.0, maximum=1.5, value=1.0, step=0.01)
with gr.Column():
pad_lr_barance = gr.Slider(label="Left/Right Balance", elem_id="pad_lr_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
with gr.Row():
with gr.Column():
pad_scale_height = gr.Slider(label="Scale Height", elem_id="pad_scale_height", minimum=1.0, maximum=1.5, value=1.0, step=0.01)
with gr.Column():
pad_tb_barance = gr.Slider(label="Top/Bottom Balance", elem_id="pad_tb_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
with gr.Row():
with gr.Column():
padding_mode = gr.Dropdown(label="Padding Mode", elem_id="padding_mode", choices=padding_mode_names, value="edge")
with gr.Column():
padding_btn = gr.Button("Run Padding", elem_id="padding_btn")
with gr.Row():
with gr.Column():
anime_style_chk = gr.Checkbox(label="Anime Style (Up Detection, Down mask Quality)", elem_id="anime_style_chk",
show_label=True, interactive=True)
with gr.Column():
sam_btn = gr.Button("Run Segment Anything", elem_id="sam_btn", variant="primary", interactive=False)
with gr.Tab("Inpainting", elem_id="inpainting_tab"):
prompt = gr.Textbox(label="Inpainting Prompt", elem_id="sd_prompt")
n_prompt = gr.Textbox(label="Negative Prompt", elem_id="sd_n_prompt")
with gr.Accordion("Advanced options", elem_id="inp_advanced_options", open=False):
composite_chk = gr.Checkbox(label="Mask area Only", elem_id="composite_chk", value=True, show_label=True, interactive=True)
with gr.Row():
with gr.Column():
sampler_name = gr.Dropdown(label="Sampler", elem_id="sampler_name", choices=sampler_names,
value=sampler_names[0], show_label=True)
with gr.Column():
ddim_steps = gr.Slider(label="Sampling Steps", elem_id="ddim_steps", minimum=1, maximum=100, value=20, step=1)
cfg_scale = gr.Slider(label="Guidance Scale", elem_id="cfg_scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
seed = gr.Slider(
label="Seed",
elem_id="sd_seed",
minimum=-1,
maximum=2147483647,
step=1,
value=-1,
)
with gr.Row():
with gr.Column():
inp_model_id = gr.Dropdown(label="Inpainting Model ID", elem_id="inp_model_id",
choices=inp_model_ids, value=inp_model_ids[inp_model_index], show_label=True)
with gr.Column():
with gr.Row():
inpaint_btn = gr.Button("Run Inpainting", elem_id="inpaint_btn", variant="primary")
with gr.Row():
save_mask_chk = gr.Checkbox(label="Save mask", elem_id="save_mask_chk",
value=False, show_label=False, interactive=False, visible=False)
iteration_count = gr.Slider(label="Iterations", elem_id="iteration_count", minimum=1, maximum=10, value=1, step=1)
with gr.Row():
if ia_check_versions.gradio_version_is_old:
out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False
).style(**out_gallery_kwargs)
else:
out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False,
**out_gallery_kwargs)
with gr.Tab("Cleaner", elem_id="cleaner_tab"):
with gr.Row():
with gr.Column():
cleaner_model_id = gr.Dropdown(label="Cleaner Model ID", elem_id="cleaner_model_id",
choices=cleaner_model_ids, value=cleaner_model_ids[0], show_label=True)
with gr.Column():
with gr.Row():
cleaner_btn = gr.Button("Run Cleaner", elem_id="cleaner_btn", variant="primary")
with gr.Row():
cleaner_save_mask_chk = gr.Checkbox(label="Save mask", elem_id="cleaner_save_mask_chk",
value=False, show_label=False, interactive=False, visible=False)
with gr.Row():
if ia_check_versions.gradio_version_is_old:
cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False
).style(**out_gallery_kwargs)
else:
cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False,
**out_gallery_kwargs)
with gr.Tab("Mask only", elem_id="mask_only_tab"):
with gr.Row():
with gr.Column():
get_alpha_image_btn = gr.Button("Get mask as alpha of image", elem_id="get_alpha_image_btn")
with gr.Column():
get_mask_btn = gr.Button("Get mask", elem_id="get_mask_btn")
with gr.Row():
with gr.Column():
alpha_out_image = gr.Image(label="Alpha channel image", elem_id="alpha_out_image", type="pil", image_mode="RGBA", interactive=False)
with gr.Column():
mask_out_image = gr.Image(label="Mask image", elem_id="mask_out_image", type="numpy", interactive=False)
with gr.Row():
with gr.Column():
get_alpha_status_text = gr.Textbox(label="", elem_id="get_alpha_status_text", max_lines=1, show_label=False, interactive=False)
with gr.Column():
gr.Markdown("")
with gr.Column():
with gr.Row():
gr.Markdown("Mouse over image: Press `S` key for Fullscreen mode, `R` key to Reset zoom")
with gr.Row():
if ia_check_versions.gradio_version_is_old:
sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8,
show_label=False, interactive=True).style(height=480)
else:
sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8,
show_label=False, interactive=True, height=480)
with gr.Row():
with gr.Column():
select_btn = gr.Button("Create Mask", elem_id="select_btn", variant="primary")
with gr.Column():
with gr.Row():
invert_chk = gr.Checkbox(label="Invert mask", elem_id="invert_chk", show_label=True, interactive=True)
ignore_black_chk = gr.Checkbox(label="Ignore black area", elem_id="ignore_black_chk", value=True, show_label=True, interactive=True)
with gr.Row():
if ia_check_versions.gradio_version_is_old:
sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12,
show_label=False, interactive=True).style(height=480)
else:
sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12,
show_label=False, interactive=True, height=480)
with gr.Row():
with gr.Column():
expand_mask_btn = gr.Button("Expand mask region", elem_id="expand_mask_btn")
expand_mask_iteration_count = gr.Slider(label="Expand Mask Iterations",
elem_id="expand_mask_iteration_count", minimum=1, maximum=100, value=1, step=1)
with gr.Column():
apply_mask_btn = gr.Button("Trim mask by sketch", elem_id="apply_mask_btn")
add_mask_btn = gr.Button("Add mask by sketch", elem_id="add_mask_btn")
load_model_btn.click(download_model, inputs=[sam_model_id], outputs=[status_text])
input_image.upload(input_image_upload, inputs=[input_image, sam_image, sel_mask], outputs=[sam_image, sel_mask, sam_btn]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_initSamSelMask")
padding_btn.click(run_padding, inputs=[input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode],
outputs=[input_image, status_text])
sam_btn.click(run_sam, inputs=[input_image, sam_model_id, sam_image, anime_style_chk], outputs=[sam_image, status_text]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSamMask")
select_btn.click(select_mask, inputs=[input_image, sam_image, invert_chk, ignore_black_chk, sel_mask], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
expand_mask_btn.click(expand_mask, inputs=[input_image, sel_mask, expand_mask_iteration_count], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
apply_mask_btn.click(apply_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
add_mask_btn.click(add_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
inpaint_btn.click(
run_inpaint,
inputs=[input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk,
sampler_name, iteration_count],
outputs=[out_image, iteration_count])
cleaner_btn.click(
run_cleaner,
inputs=[input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk],
outputs=[cleaner_out_image])
get_alpha_image_btn.click(
run_get_alpha_image,
inputs=[input_image, sel_mask],
outputs=[alpha_out_image, get_alpha_status_text])
get_mask_btn.click(
run_get_mask,
inputs=[sel_mask],
outputs=[mask_out_image])
return [(inpaint_anything_interface, "Inpaint Anything", "inpaint_anything")]
block, _, _ = on_ui_tabs()[0]
block.launch(share=True)
|