Spaces:
Runtime error
Runtime error
import copy | |
import os | |
import sys | |
from typing import Any, Dict, List, Union | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from tqdm import tqdm | |
inpa_basedir = os.path.normpath(os.path.join(os.path.dirname(__file__), "..")) | |
if inpa_basedir not in sys.path: | |
sys.path.append(inpa_basedir) | |
from ia_file_manager import ia_file_manager # noqa: E402 | |
from ia_get_dataset_colormap import create_pascal_label_colormap # noqa: E402 | |
from ia_logging import ia_logging # noqa: E402 | |
from ia_sam_manager import check_bfloat16_support, get_sam_mask_generator # noqa: E402 | |
from ia_ui_items import get_sam_model_ids # noqa: E402 | |
def get_all_sam_ids() -> List[str]: | |
"""Get all SAM IDs. | |
Returns: | |
List[str]: SAM IDs | |
""" | |
return get_sam_model_ids() | |
def sam_file_path(sam_id: str) -> str: | |
"""Get SAM file path. | |
Args: | |
sam_id (str): SAM ID | |
Returns: | |
str: SAM file path | |
""" | |
return os.path.join(ia_file_manager.models_dir, sam_id) | |
def sam_file_exists(sam_id: str) -> bool: | |
"""Check if SAM file exists. | |
Args: | |
sam_id (str): SAM ID | |
Returns: | |
bool: True if SAM file exists else False | |
""" | |
sam_checkpoint = sam_file_path(sam_id) | |
return os.path.isfile(sam_checkpoint) | |
def get_available_sam_ids() -> List[str]: | |
"""Get available SAM IDs. | |
Returns: | |
List[str]: available SAM IDs | |
""" | |
all_sam_ids = get_all_sam_ids() | |
for sam_id in all_sam_ids.copy(): | |
if not sam_file_exists(sam_id): | |
all_sam_ids.remove(sam_id) | |
return all_sam_ids | |
def check_inputs_generate_sam_masks( | |
input_image: Union[np.ndarray, Image.Image], | |
sam_id: str, | |
anime_style_chk: bool = False, | |
) -> None: | |
"""Check generate SAM masks inputs. | |
Args: | |
input_image (Union[np.ndarray, Image.Image]): input image | |
sam_id (str): SAM ID | |
anime_style_chk (bool): anime style check | |
Returns: | |
None | |
""" | |
if input_image is None or not isinstance(input_image, (np.ndarray, Image.Image)): | |
raise ValueError("Invalid input image") | |
if sam_id is None or not isinstance(sam_id, str): | |
raise ValueError("Invalid SAM ID") | |
if anime_style_chk is None or not isinstance(anime_style_chk, bool): | |
raise ValueError("Invalid anime style check") | |
def convert_input_image(input_image: Union[np.ndarray, Image.Image]) -> np.ndarray: | |
"""Convert input image. | |
Args: | |
input_image (Union[np.ndarray, Image.Image]): input image | |
Returns: | |
np.ndarray: converted input image | |
""" | |
if isinstance(input_image, Image.Image): | |
input_image = np.array(input_image) | |
if input_image.ndim == 2: | |
input_image = input_image[:, :, np.newaxis] | |
if input_image.shape[2] == 1: | |
input_image = np.concatenate([input_image] * 3, axis=-1) | |
return input_image | |
def generate_sam_masks( | |
input_image: Union[np.ndarray, Image.Image], | |
sam_id: str, | |
anime_style_chk: bool = False, | |
) -> List[Dict[str, Any]]: | |
"""Generate SAM masks. | |
Args: | |
input_image (Union[np.ndarray, Image.Image]): input image | |
sam_id (str): SAM ID | |
anime_style_chk (bool): anime style check | |
Returns: | |
List[Dict[str, Any]]: SAM masks | |
""" | |
check_inputs_generate_sam_masks(input_image, sam_id, anime_style_chk) | |
input_image = convert_input_image(input_image) | |
sam_checkpoint = sam_file_path(sam_id) | |
sam_mask_generator = get_sam_mask_generator(sam_checkpoint, anime_style_chk) | |
ia_logging.info(f"{sam_mask_generator.__class__.__name__} {sam_id}") | |
if "sam2_" in sam_id: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.bfloat16 if check_bfloat16_support() else torch.float16 | |
with torch.inference_mode(), torch.autocast(device, dtype=torch_dtype): | |
sam_masks = sam_mask_generator.generate(input_image) | |
else: | |
sam_masks = sam_mask_generator.generate(input_image) | |
if anime_style_chk: | |
for sam_mask in sam_masks: | |
sam_mask_seg = sam_mask["segmentation"] | |
sam_mask_seg = cv2.morphologyEx(sam_mask_seg.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((5, 5), np.uint8)) | |
sam_mask_seg = cv2.morphologyEx(sam_mask_seg.astype(np.uint8), cv2.MORPH_OPEN, np.ones((5, 5), np.uint8)) | |
sam_mask["segmentation"] = sam_mask_seg.astype(bool) | |
ia_logging.info("sam_masks: {}".format(len(sam_masks))) | |
sam_masks = copy.deepcopy(sam_masks) | |
return sam_masks | |
def sort_masks_by_area( | |
sam_masks: List[Dict[str, Any]], | |
) -> List[Dict[str, Any]]: | |
"""Sort mask by area. | |
Args: | |
sam_masks (List[Dict[str, Any]]): SAM masks | |
Returns: | |
List[Dict[str, Any]]: sorted SAM masks | |
""" | |
return sorted(sam_masks, key=lambda x: np.sum(x.get("segmentation").astype(np.uint32))) | |
def get_seg_colormap() -> np.ndarray: | |
"""Get segmentation colormap. | |
Returns: | |
np.ndarray: segmentation colormap | |
""" | |
cm_pascal = create_pascal_label_colormap() | |
seg_colormap = cm_pascal | |
seg_colormap = np.array([c for c in seg_colormap if max(c) >= 64], dtype=np.uint8) | |
return seg_colormap | |
def insert_mask_to_sam_masks( | |
sam_masks: List[Dict[str, Any]], | |
insert_mask: Dict[str, Any], | |
) -> List[Dict[str, Any]]: | |
"""Insert mask to SAM masks. | |
Args: | |
sam_masks (List[Dict[str, Any]]): SAM masks | |
insert_mask (Dict[str, Any]): insert mask | |
Returns: | |
List[Dict[str, Any]]: SAM masks | |
""" | |
if insert_mask is not None and isinstance(insert_mask, dict) and "segmentation" in insert_mask: | |
if (len(sam_masks) > 0 and | |
sam_masks[0]["segmentation"].shape == insert_mask["segmentation"].shape and | |
np.any(insert_mask["segmentation"])): | |
sam_masks.insert(0, insert_mask) | |
ia_logging.info("insert mask to sam_masks") | |
return sam_masks | |
def create_seg_color_image( | |
input_image: Union[np.ndarray, Image.Image], | |
sam_masks: List[Dict[str, Any]], | |
) -> np.ndarray: | |
"""Create segmentation color image. | |
Args: | |
input_image (Union[np.ndarray, Image.Image]): input image | |
sam_masks (List[Dict[str, Any]]): SAM masks | |
Returns: | |
np.ndarray: segmentation color image | |
""" | |
input_image = convert_input_image(input_image) | |
seg_colormap = get_seg_colormap() | |
sam_masks = sam_masks[:len(seg_colormap)] | |
with tqdm(total=len(sam_masks), desc="Processing segments") as progress_bar: | |
canvas_image = np.zeros((*input_image.shape[:2], 1), dtype=np.uint8) | |
for idx, seg_dict in enumerate(sam_masks[0:min(255, len(sam_masks))]): | |
seg_mask = np.expand_dims(seg_dict["segmentation"].astype(np.uint8), axis=-1) | |
canvas_mask = np.logical_not(canvas_image.astype(bool)).astype(np.uint8) | |
seg_color = np.array([idx+1], dtype=np.uint8) * seg_mask * canvas_mask | |
canvas_image = canvas_image + seg_color | |
progress_bar.update(1) | |
seg_colormap = np.insert(seg_colormap, 0, [0, 0, 0], axis=0) | |
temp_canvas_image = np.apply_along_axis(lambda x: seg_colormap[x[0]], axis=-1, arr=canvas_image) | |
if len(sam_masks) > 255: | |
canvas_image = canvas_image.astype(bool).astype(np.uint8) | |
for idx, seg_dict in enumerate(sam_masks[255:min(509, len(sam_masks))]): | |
seg_mask = np.expand_dims(seg_dict["segmentation"].astype(np.uint8), axis=-1) | |
canvas_mask = np.logical_not(canvas_image.astype(bool)).astype(np.uint8) | |
seg_color = np.array([idx+2], dtype=np.uint8) * seg_mask * canvas_mask | |
canvas_image = canvas_image + seg_color | |
progress_bar.update(1) | |
seg_colormap = seg_colormap[256:] | |
seg_colormap = np.insert(seg_colormap, 0, [0, 0, 0], axis=0) | |
seg_colormap = np.insert(seg_colormap, 0, [0, 0, 0], axis=0) | |
canvas_image = np.apply_along_axis(lambda x: seg_colormap[x[0]], axis=-1, arr=canvas_image) | |
canvas_image = temp_canvas_image + canvas_image | |
else: | |
canvas_image = temp_canvas_image | |
ret_seg_image = canvas_image.astype(np.uint8) | |
return ret_seg_image | |