Spaces:
Runtime error
Runtime error
File size: 4,447 Bytes
26adeef 7181cca 3a5dac1 4e22254 a60a824 3a5dac1 28047c0 3a5dac1 e15b560 3a5dac1 a482d37 c006a72 b8adfc6 4e22254 3a5dac1 3b53056 4e22254 3b53056 4e22254 3a5dac1 7181cca 4e22254 3b53056 4e22254 3a5dac1 4e22254 3a5dac1 4e22254 3a5dac1 4e22254 7181cca 3a5dac1 4e22254 3a5dac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import os
from collections import defaultdict
from database import save_response, read_responses
import gradio as gr
import pandas as pd
import random
css = """
.rtl
{
text-align: right;
}
.usr-inst{
text-align:center;
background-color: #3e517e;
border: solid 1px;
border-radius: 5px;
padding: 10px;
}
.svelte-1kzox3m{
justify-content: end;
}
.svelte-sfqy0y{
border:none;
}
.svelte-90oupt{
background-color: #0b0f19;
padding-top: 0px;
}
#component-4{
border: 1px solid;
padding: 5px;
background-color: #242433;
border-radius: 5px;
}
"""
file_path = 'instructions/merged.json'
df = pd.read_json(file_path, orient='records', lines=False)
# that keeps track of how many times each question has been used
question_count = {index: 0 for index in df.index}
model_rankings = defaultdict(lambda: {'1st': 0, '2nd': 0, '3rd': 0})
curr_order = ['CIDAR', 'CHAT', 'ALPAGASUS']
def get_rank_suffix(rank):
if 11 <= rank <= 13:
return 'th'
else:
suffixes = {1: 'st', 2: 'nd', 3: 'rd'}
return suffixes.get(rank % 10, 'th')
def process_rankings(user_rankings):
print("Processing Rankings:", user_rankings) # Debugging print
save_response(user_rankings)
print(read_responses())
return
def get_questions_and_answers():
available_questions = [index for index, count in question_count.items() if count < 3]
index = random.sample(available_questions, min(1, len(available_questions)))[0]
question_count[index] += 1
question = df.loc[index, 'instruction']
answers_with_models = [
(df.loc[index, 'cidar_output'], 'CIDAR'),
(df.loc[index, 'chat_output'], 'CHAT'),
(df.loc[index, 'alpagasus_output'], 'ALPAGASUS')
]
random.shuffle(answers_with_models) # Shuffle answers with their IDs
curr_order = [model for _, model in answers_with_models]
return (question, answers_with_models)
def reload_components():
question, answers = get_questions_and_answers()
user_instructions_txt = " في الصفحة التالية ستجد طلب له ثلاث إجابات مختلفة. من فضلك اختر مدي توافق كل إجابة مع الثقافة العربية."
radios = []
user_instructions = gr.Markdown(rtl=True, value= f'<h1 class="usr-inst">{user_instructions_txt}</h1>')
question_md = gr.Markdown(rtl=True, value= f'<b> {question} </b>')
for answer, model in answers:
radios.append(gr.Markdown(rtl = True, value= answer))
radios.append(gr.Radio(elem_classes = 'rtl', choices = ['متوافق', 'متوافق جزئياً', 'غير متوافق'], value = 'غير متوافق', label = ""))
return [user_instructions, question_md] + radios
def rank_interface():
def rank_fluency(*radio_selections):
user_rankings = {}
for i in range(0, len(radio_selections), 3): # Process each set of 3 dropdowns for a question
selections = radio_selections[i:i+3]
for j, chosen_answer in enumerate(selections):
model_name = curr_order[j]
if chosen_answer == 'غير متوافق':
user_rankings[model_name] = 3
elif chosen_answer == 'متوافق جزئياً':
user_rankings[model_name] = 2
elif chosen_answer == 'متوافق':
user_rankings[model_name] = 1
process_rankings(user_rankings)
return "سجلنا ردك، ما قصرت =)"
# Create three dropdowns for each question for 1st, 2nd, and 3rd choices
inputs = []
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
outptus= reload_components()
out_text = gr.Markdown("", rtl = True)
gr.Button("Submit").click(
fn=rank_fluency,
inputs=outptus[1:],
outputs=out_text
).then(
fn=reload_components,
outputs = outptus
)
gr.Button("Skip").click(
fn=reload_components,
outputs=outptus
)
return demo
questions = get_questions_and_answers()
iface = rank_interface()
iface.launch(share = True)
|