File size: 1,548 Bytes
e644b76
ea237a1
e644b76
 
 
ea237a1
 
 
e644b76
 
 
 
 
 
 
 
 
 
ea237a1
 
 
 
 
e644b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea237a1
 
 
 
e644b76
ea237a1
 
 
 
 
 
e644b76
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import torch

app = FastAPI()

# Check if CUDA is available
if torch.cuda.is_available():
    device = torch.device("cuda:0")
else:
    device = torch.device("cpu")

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("kmack/malicious-url-detection")
model = AutoModelForSequenceClassification.from_pretrained("kmack/malicious-url-detection")
model = model.to(device)

# Define the request model
class URLRequest(BaseModel):
    url: str

# Prediction function
def get_prediction(input_text: str) -> dict:
    label2id = model.config.label2id
    inputs = tokenizer(input_text, return_tensors='pt', truncation=True)
    inputs = inputs.to(device)
    outputs = model(**inputs)
    logits = outputs.logits
    sigmoid = torch.nn.Sigmoid()
    probs = sigmoid(logits.squeeze().cpu())
    probs = probs.detach().numpy()
    for i, k in enumerate(label2id.keys()):
        label2id[k] = probs[i]
    label2id = {k: float(v) for k, v in sorted(label2id.items(), key=lambda item: item[1].item(), reverse=True)}
    return label2id

# Define the API endpoint for URL prediction
@app.post("/predict")
async def predict(url_request: URLRequest):
    url_to_check = url_request.url
    result = get_prediction(url_to_check)
    return {"prediction": result}

# Health check endpoint
@app.get("/")
async def read_root():
    return {"message": "API is up and running"}