Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.math import truncated_normal_ | |
class Downsample2D(nn.Module): | |
def __init__(self, mode='nearest', scale=4): | |
super().__init__() | |
self.mode = mode | |
self.scale = scale | |
def forward(self, x): | |
n, c, h, w = x.size() | |
x = F.interpolate(x, | |
size=(h // self.scale + 1, w // self.scale + 1), | |
mode=self.mode) | |
return x | |
def generate_coord(x): | |
_, _, h, w = x.size() | |
device = x.device | |
col = torch.arange(0, h, device=device) | |
row = torch.arange(0, w, device=device) | |
grid_h, grid_w = torch.meshgrid(col, row) | |
return grid_h, grid_w | |
class PositionEmbeddingSine(nn.Module): | |
def __init__(self, | |
num_pos_feats=64, | |
temperature=10000, | |
normalize=False, | |
scale=None): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, x): | |
grid_y, grid_x = generate_coord(x) | |
y_embed = grid_y.unsqueeze(0).float() | |
x_embed = grid_x.unsqueeze(0).float() | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, | |
dtype=torch.float32, | |
device=x.device) | |
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), | |
dim=4).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), | |
dim=4).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
return pos | |
class PositionEmbeddingLearned(nn.Module): | |
def __init__(self, num_pos_feats=64, H=30, W=30): | |
super().__init__() | |
self.H = H | |
self.W = W | |
self.pos_emb = nn.Parameter( | |
truncated_normal_(torch.zeros(1, num_pos_feats, H, W))) | |
def forward(self, x): | |
bs, _, h, w = x.size() | |
pos_emb = self.pos_emb | |
if h != self.H or w != self.W: | |
pos_emb = F.interpolate(pos_emb, size=(h, w), mode="bilinear") | |
return pos_emb | |