Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,120 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
from sentence_transformers import SentenceTransformer
|
4 |
-
import faiss
|
5 |
-
import numpy as np
|
6 |
-
import pdfplumber
|
7 |
-
|
8 |
-
# Initialize the InferenceClient
|
9 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
-
|
11 |
-
# Function to extract text from PDFs
|
12 |
-
def extract_text_from_pdf(pdf_path):
|
13 |
-
text = ""
|
14 |
-
with pdfplumber.open(pdf_path) as pdf:
|
15 |
-
for page in pdf.pages:
|
16 |
-
page_text = page.extract_text()
|
17 |
-
if page_text:
|
18 |
-
text += page_text
|
19 |
-
return text
|
20 |
-
|
21 |
-
# Load and preprocess book PDFs
|
22 |
-
pdf_files = ["Diagnostic and statistical manual of mental disorders _ DSM-5 ( PDFDrive.com ).pdf"]
|
23 |
-
all_texts = [extract_text_from_pdf(pdf) for pdf in pdf_files]
|
24 |
-
|
25 |
-
# Split text into chunks
|
26 |
-
def chunk_text(text, chunk_size=300):
|
27 |
-
sentences = text.split('. ')
|
28 |
-
chunks, current_chunk = [], ""
|
29 |
-
for sentence in sentences:
|
30 |
-
if len(current_chunk) + len(sentence) <= chunk_size:
|
31 |
-
current_chunk += sentence + ". "
|
32 |
-
else:
|
33 |
-
chunks.append(current_chunk.strip())
|
34 |
-
current_chunk = sentence + ". "
|
35 |
-
if current_chunk:
|
36 |
-
chunks.append(current_chunk.strip())
|
37 |
-
return chunks
|
38 |
-
|
39 |
-
# Prepare embeddings for each book
|
40 |
-
model = SentenceTransformer("all-MiniLM-L6-v2")
|
41 |
-
index = faiss.IndexFlatL2(model.get_sentence_embedding_dimension())
|
42 |
-
chunked_texts = [chunk_text(text) for text in all_texts]
|
43 |
-
all_chunks = [chunk for chunks in chunked_texts for chunk in chunks]
|
44 |
-
embeddings = model.encode(all_chunks, convert_to_tensor=True).detach().cpu().numpy()
|
45 |
-
index.add(embeddings)
|
46 |
-
|
47 |
-
# Function to generate response
|
48 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
49 |
-
# Step 1: Retrieve relevant chunks based on user message
|
50 |
-
query_embedding = model.encode([message], convert_to_tensor=True).detach().cpu().numpy()
|
51 |
-
k = 5
|
52 |
-
_, indices = index.search(query_embedding, k)
|
53 |
-
relevant_chunks = " ".join([all_chunks[idx] for idx in indices[0]])
|
54 |
-
|
55 |
-
# Step 2: Create prompt for the model
|
56 |
-
prompt = f"{system_message}\n\nUser Query: {message}\n\nRelevant Information: {relevant_chunks}"
|
57 |
-
response = ""
|
58 |
-
|
59 |
-
# Step 3: Generate response
|
60 |
-
for message in client.chat_completion(
|
61 |
-
[{"role": "system", "content": system_message}, {"role": "user", "content": message}],
|
62 |
-
max_tokens=max_tokens,
|
63 |
-
stream=True,
|
64 |
-
temperature=temperature,
|
65 |
-
top_p=top_p,
|
66 |
-
):
|
67 |
-
token = message.choices[0].delta.content
|
68 |
-
response += token
|
69 |
-
yield response
|
70 |
-
|
71 |
-
# HTML for navigation bar
|
72 |
-
navbar_html = """
|
73 |
-
<div style="background-color: #f1f1f1; padding: 10px; text-align: center;">
|
74 |
-
<a href="#about" style="margin-right: 20px; text-decoration: none; font-weight: bold;">About Us</a>
|
75 |
-
<a href="#team" style="text-decoration: none; font-weight: bold;">Team</a>
|
76 |
-
</div>
|
77 |
-
"""
|
78 |
-
|
79 |
-
# About Us section
|
80 |
-
about_us = """
|
81 |
-
# About Us
|
82 |
-
*Personal Psychologist AI* is an AI-driven mental health assistant designed to provide users with mental health support and guidance. The application leverages state-of-the-art natural language processing (NLP) techniques to analyze user input and provide insightful, empathetic, and actionable responses. The AI is powered by models fine-tuned with mental health-related data, including the DSM-5, to assist in diagnosing and offering mental health advice based on text input.
|
83 |
-
|
84 |
-
### Key Features:
|
85 |
-
- **AI-Powered Mental Health Support**: Uses advanced NLP models like GPT-2 and fine-tuned models for mental health sentiment analysis.
|
86 |
-
- **DSM-5 Integration**: The app uses DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) to guide responses related to various mental health conditions.
|
87 |
-
- **Personalized Recommendations**: Based on user input, the AI provides personalized advice, coping strategies, and insights.
|
88 |
-
- **Fast Information Retrieval**: Embedding techniques (like Sentence-BERT) and FAISS (Fast Approximate Nearest Neighbors) are used for efficient information retrieval from mental health books and other resources.
|
89 |
-
- **User Interaction**: Users can input their mental health concerns or queries, and the AI generates helpful and empathetic responses.
|
90 |
-
|
91 |
-
### Project Team:
|
92 |
-
- **Hamaad Ayub Khan**: hakgs1234@gmail.com | [LinkedIn](https://linkedin.com/in/hamaadayubkhan)
|
93 |
-
- **Muhammad Zeeshan Burki**: zeshanburki42@gmail.com | [LinkedIn](https://linkedin.com/in/muhammad-zeeshan-burki)
|
94 |
-
- **Izhan Sajid**: izhansajid847@gmail.com | [LinkedIn](https://linkedin.com/in/izhan-sajid-70a6bb302)
|
95 |
-
- **Izza Shahzad**: izzashahzad2003@gmail.com | [LinkedIn](https://linkedin.com/in/izza-shahzad-b43273267)
|
96 |
-
- **Salar Tariq**: msalartariq05@gmail.com | [LinkedIn](https://linkedin.com/in/msalaartariq)
|
97 |
-
"""
|
98 |
-
|
99 |
-
# Gradio ChatInterface with additional inputs
|
100 |
-
demo = gr.ChatInterface(
|
101 |
-
respond,
|
102 |
-
title="Personal Psychologist",
|
103 |
-
description="AI-driven mental health assistant based on DSM-5.",
|
104 |
-
additional_inputs=[
|
105 |
-
gr.Textbox(value="You are a helpful and empathetic mental health assistant.", label="System message"),
|
106 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
107 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
108 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
109 |
-
],
|
110 |
-
layout="vertical",
|
111 |
-
)
|
112 |
-
|
113 |
-
# Combine Navbar and About Us section with the interface
|
114 |
-
with demo:
|
115 |
-
gr.HTML(navbar_html)
|
116 |
-
gr.HTML(about_us)
|
117 |
-
|
118 |
-
# Launch the Gradio interface
|
119 |
-
if __name__ == "__main__":
|
120 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|