import gradio as gr import numpy as np import pandas as pd from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import euclidean_distances # Load DataFrame text_embeddings = pd.read_parquet('text_embeddings_abstract_generated_by_LLM.parquet') # Initialize models model_all_Mini = SentenceTransformer('all-MiniLM-L6-v2') model_e5_large_v2 = SentenceTransformer('intfloat/e5-large-v2') model_e5_small_v2 = SentenceTransformer('intfloat/e5-small-v2') model_gte_large = SentenceTransformer('thenlper/gte-large') model_GIST_large = SentenceTransformer('avsolatorio/GIST-large-Embedding-v0') # Model selection drop-down list model_options = { 'all-MiniLM-L6-v2': model_all_Mini, 'intfloat/e5-large-v2': model_e5_large_v2, 'intfloat/e5-small-v2': model_e5_small_v2, 'thenlper/gte-large': model_gte_large, 'avsolatorio/GIST-large-Embedding-v0': model_GIST_large } # Main function for the Gradio interface def find_similar_texts(model_name, input_text): # Check whether model has been selected if not model_name: return "You have forgotten to select a sentence-transformer." # Check whether there are abstracts matching the text input input_embedding_mini = model_all_Mini.encode(input_text).reshape(1, -1) embedding_matrix_mini = np.vstack(text_embeddings['embedding_all-MiniLM-L6-v2']) distances_mini = euclidean_distances(embedding_matrix_mini, input_embedding_mini).flatten() # Only continue if similar abstract found if any(distances_mini < 1.05): selected_model = model_options[model_name] embedding_column = 'embedding_' + model_name input_embedding = selected_model.encode(input_text).reshape(1, -1) embedding_matrix = np.vstack(text_embeddings[embedding_column]) distances = euclidean_distances(embedding_matrix, input_embedding).flatten() text_embeddings['euclidean_distance'] = distances sorted_embeddings = text_embeddings.sort_values(by='euclidean_distance', ascending=True) top_five = sorted_embeddings.head(5)[['abstract', 'patent no', 'title']] # formatted_output = '\n\n'.join([f"Patent No: {row['patent no']}\nAbstract: {row['abstract']}\n" for index, row in top_five.iterrows()]) formatted_output = '\n\n'.join([f"Patent No: {row['patent no']}\nTitle: {row['title']}\nAbstract: {row['abstract']}\n" for index, row in top_five.iterrows()]) return formatted_output else: return "It seems there is no patent abstract close to your description." # Create Gradio interface using Blocks with gr.Blocks() as demo: gr.Markdown("## Sentence-Transformer based AI-Generated-Patent-Abstract Search") with gr.Row(): with gr.Column(): model_selector = gr.Dropdown(choices=list(model_options.keys()), label="Chose Sentence-Transformer") text_input = gr.Textbox(lines=2, placeholder="machine learning for drug dosing", label="input_text (example: machine learning for drug dosing. Remark: This is only a small number of AI generated machine learning patents!)") submit_button = gr.Button("search") with gr.Column(): output = gr.Textbox(label="top 5 patent abstracts (if available)") submit_button.click(find_similar_texts, inputs=[model_selector, text_input], outputs=output) gr.Markdown(""" ### Description This demo app leverages several Sentence Transformer models to compute the semantic distance between user input and a small number of AI generated patent abstracts in the field of machine learning and AI. - 'all-MiniLM-L6-v2': embedding size is 384. [More info](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) and [here](https://sbert.net/). - 'intfloat/e5-large-v2'. Text Embeddings by Weakly-Supervised Contrastive Pre-training, embedding size is 1024. [More info](https://huggingface.co/intfloat/e5-large-v2). - 'intfloat/e5-small-v2': Text Embeddings by Weakly-Supervised Contrastive Pre-training, embedding size is 384. [More info](https://huggingface.co/intfloat/e5-small-v2). - 'thenlper/gte-large': General Text Embeddings (GTE) model, embedding size is 1024. [More info](https://huggingface.co/thenlper/gte-large) and [here](https://arxiv.org/abs/2308.03281). - 'avsolatorio/GIST-large-Embedding-v0': Fine-tuned on top of the BAAI/bge-large-en-v1.5 using the MEDI dataset augmented with mined triplets from the MTEB Classification training dataset, embedding size is 1024. [More info](https://huggingface.co/avsolatorio/GIST-large-Embedding-v0) and [here](https://arxiv.org/abs/2402.16829). Please note: The data used in this demo contains only a very limited subset of patent abstracts and is intended only for demonstration purposes. It does by far not cover all patents or their complete data. """) model_selector.change(find_similar_texts, inputs=[model_selector, text_input], outputs=output) text_input.submit(find_similar_texts, inputs=[model_selector, text_input], outputs=output) demo.launch() #The patents can be viewed at [Espacenet](https://worldwide.espacenet.com/?locale=en_EP), the free onine service by the European Patent Office.