File size: 5,505 Bytes
f2ae81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
import pandas as pd
from constants import *

# ... 其他导入 ...

# 定义自定义 CSS
custom_css = """
h1  { /* 根据需要选择正确的标题标签 */
    background-color: blue; /* 蓝色背景 */
    color: white; /* 白色文字 */
    padding: 10px; /* 内边距 */
    text-align: center; /* 文本居中 */
}
h2  { /* 根据需要选择正确的标题标签 */
    color: white; /* 白色文字 */
    padding: 10px; /* 内边距 */
    text-align: center; /* 文本居中 */
}

"""

def get_preview_data():
    df = pd.read_json(DATA_DIR)
    df=df.head(4)
    return df
def get_result_data():
    df={
    "DataSet": ["WikiData_recent", "WikiData_recent", "WikiData_recent", "WikiData_recent",
                "ZsRE", "ZsRE", "ZsRE", "ZsRE",
                "WikiBio", "WikiBio", "WikiBio",
                "WikiData_counterfact", "WikiData_counterfact", "WikiData_counterfact", "WikiData_counterfact",
                "ConvSent", "ConvSent", "ConvSent",
                "Sanitation", "Sanitation", "Sanitation"],
    "Metric": ["Edit Succ. ↑", "Portability ↑", "Locality ↑", "Fluency ↑",
               "Edit Succ. ↑", "Portability ↑", "Locality ↑", "Fluency ↑",
               "Edit Succ. ↑", "Locality ↑", "Fluency ↑",
               "Edit Succ. ↑", "Portability ↑", "Locality ↑", "Fluency ↑",
               "Edit Succ. ↑", "Locality ↓", "Fluency ↑",
               "Edit Succ. ↑", "Locality ↑", "Fluency ↑"],
    "SERAC": [98.68, 63.52, 100.00, 553.19,
              99.67, 56.48, 30.23, 410.89,
              99.69, 69.79, 606.95,
              99.99, 76.07, 98.96, 549.91,
              62.75, 0.26, 458.21,
              0.00, 100.00, 416.29],
    "ICE": [60.74, 36.93, 33.34, 531.01,
            66.01, 63.94, 23.14, 541.14,
            95.53, 47.90, 632.92,
            69.83, 45.32, 32.38, 547.22,
            52.78, 49.73, 621.45,
            72.50, 56.58, 794.15],
    "AdaLoRA": [65.61, 47.22, 55.78, 537.51,
                69.86, 52.95, 72.21, 532.82,
                97.02, 57.87, 615.86,
                72.14, 55.17, 66.78, 553.85,
                44.89, 0.18, 606.42,
                2.50, 65.50, 330.44],
    "MEND": [76.88, 50.11, 92.87, 586.34,
             96.74, 60.41, 92.79, 524.33,
             93.66, 69.51, 609.39,
             78.82, 57.53, 94.16, 588.94,
             50.76, 3.42, 379.43,
             0.00, 5.29, 407.18],
    "ROME": [85.08, 37.45, 66.2, 574.28,
             96.57, 52.20, 27.14, 570.47,
             95.05, 46.96, 617.25,
             83.21, 38.69, 65.4, 578.84,
             45.79, 0.00, 606.32,
             85.00, 50.31, 465.12],
    "MEMIT": [85.32, 37.94, 64.78, 566.66,
              83.07, 51.43, 25.46, 559.72,
              94.29, 51.56, 616.65,
              83.41, 40.09, 63.68, 568.58,
              44.75, 0.00, 602.62,
              48.75, 67.47, 466.10],
    "FT-L": [71.18, 48.71, 63.7, 549.35,
             54.65, 45.02, 71.12, 474.18,
             83.41, 40.09, 63.68, 568.58,
             66.27, 60.14, 604.00,
             51.12, 39.07, 62.51,
             48.75, 67.47, 466.10]
    }
    df=pd.DataFrame(df)
    return df

block = gr.Blocks(css=custom_css)  # 应用自定义 CSS

with block:
    gr.Markdown(TITLE)
    
    gr.Markdown("## BACKGROUND")
    gr.Markdown(
        BACKGROUND
    )
    gr.Image('./img/demo.gif')
            
    gr.Markdown("## DATA PREVIEW")
    gr.Markdown(LEADERBORAD_INTRODUCTION)

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Data preview ", elem_id="ke-benchmark-tab-table", id=0):
            # 创建数据帧组件
            ke_data_component = gr.components.Dataframe(
                value=get_preview_data(), 
                headers=DATA_COLUMN_NAMES,
                type="pandas", 
            )
        with gr.TabItem("data Structure", elem_id="about-struct-tab-table", id=3):
            gr.Markdown(DATA_STRUCT, elem_classes="markdown-text")
            
        with gr.TabItem("📝 data schema", elem_id="about-benchmark-tab-table", id=4):
            gr.Markdown(DATA_SCHEMA, elem_classes="markdown-text")
       
       
       
        
    gr.Markdown("## EXPERIMENT RESULTS")
    gr.Markdown("We list the results of current knowledge editing methods on Llama2-7b-chat in Table")
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 result", elem_id="ke-benchmark-tab-table", id=0):
            # 创建数据帧组件
            ke_data_component = gr.components.Dataframe(
                value=get_result_data(), 
                headers=RESULT_COLUMN_NAMES,
                type="pandas", 
            )
        # About tab
        with gr.TabItem("📝 About", elem_id="about-benchmark-tab-table", id=4):
            gr.Markdown("Results of existing knowledge edit methods on the constructed benchmark. The symbol indicates that higher numbers correspond to better performance, while ↓ denotes the opposite, with lower numbers indicating better performance. For WikiBio and Convsent, we do not test the portability as they are about specific topics. ", elem_classes="markdown-text")
            
    with gr.Row():
        with gr.Accordion("Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ).style(show_copy_button=True)       

block.launch(share=True)