Spaces:
Running
Running
Zengyf-CVer
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
# Gradio YOLOv8 Det v1.3.
|
2 |
# 创建人:曾逸夫
|
3 |
-
# 创建时间:
|
4 |
-
# pip install gradio>=4.
|
5 |
# python gradio_yolov8_det_v1.py
|
6 |
|
7 |
|
|
|
8 |
import argparse
|
9 |
import csv
|
10 |
import random
|
@@ -36,9 +37,6 @@ from PIL import Image, ImageDraw, ImageFont
|
|
36 |
|
37 |
from util.fonts_opt import is_fonts
|
38 |
|
39 |
-
# Gradio YOLOv8 Det版本
|
40 |
-
GYD_VERSION = "Gradio YOLOv8 Det v1.2.1"
|
41 |
-
|
42 |
# 文件后缀
|
43 |
suffix_list = [".csv", ".yaml"]
|
44 |
|
@@ -63,9 +61,9 @@ GYD_SUB_TITLE = """
|
|
63 |
"""
|
64 |
|
65 |
EXAMPLES_DET = [
|
66 |
-
["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
|
67 |
-
["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"],
|
68 |
-
["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
|
69 |
[
|
70 |
"./img_examples/Millenial-at-work.jpg",
|
71 |
"yolov8x",
|
@@ -74,9 +72,10 @@ EXAMPLES_DET = [
|
|
74 |
0.5,
|
75 |
0.5,
|
76 |
100,
|
|
|
77 |
"所有尺寸",
|
78 |
],
|
79 |
-
["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
|
80 |
[
|
81 |
"./img_examples/Millenial-at-work.jpg",
|
82 |
"yolov8x-seg",
|
@@ -85,17 +84,18 @@ EXAMPLES_DET = [
|
|
85 |
0.5,
|
86 |
0.5,
|
87 |
100,
|
|
|
88 |
"所有尺寸",
|
89 |
],
|
90 |
]
|
91 |
|
92 |
EXAMPLES_CLAS = [
|
93 |
-
["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "yolov8s-cls"],
|
94 |
-
["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "yolov8l-cls"],
|
95 |
-
["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "yolov8m-cls"],
|
96 |
-
["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "yolov8m-cls"],
|
97 |
-
["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "yolov8m-cls"],
|
98 |
-
["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "yolov8m-cls"],
|
99 |
]
|
100 |
|
101 |
GYD_CSS = """#disp_image {
|
@@ -103,8 +103,11 @@ GYD_CSS = """#disp_image {
|
|
103 |
}"""
|
104 |
|
105 |
|
|
|
|
|
|
|
106 |
def parse_args(known=False):
|
107 |
-
parser = argparse.ArgumentParser(description=
|
108 |
parser.add_argument(
|
109 |
"--model_name", "-mn", default="yolov8s", type=str, help="model name"
|
110 |
)
|
@@ -315,9 +318,18 @@ def seg_output(img_path, seg_mask_list, color_list, cls_list):
|
|
315 |
|
316 |
# 目标检测和图像分割模型加载
|
317 |
def model_det_loading(
|
318 |
-
img_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
):
|
320 |
model = YOLO(yolo_model)
|
|
|
|
|
321 |
|
322 |
results = model(
|
323 |
source=img_path,
|
@@ -325,6 +337,7 @@ def model_det_loading(
|
|
325 |
imgsz=infer_size,
|
326 |
conf=conf,
|
327 |
iou=iou,
|
|
|
328 |
max_det=max_det,
|
329 |
)
|
330 |
results = list(results)[0]
|
@@ -332,17 +345,25 @@ def model_det_loading(
|
|
332 |
|
333 |
|
334 |
# 图像分类模型加载
|
335 |
-
def model_cls_loading(img_path, yolo_model="yolov8s-cls.pt"):
|
336 |
model = YOLO(yolo_model)
|
337 |
|
338 |
-
results = model(source=img_path)
|
339 |
results = list(results)[0]
|
340 |
return results
|
341 |
|
342 |
|
343 |
# YOLOv8图片检测函数
|
344 |
def yolo_det_img(
|
345 |
-
img_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
):
|
347 |
global model, model_name_tmp, device_tmp
|
348 |
|
@@ -363,8 +384,10 @@ def yolo_det_img(
|
|
363 |
iou,
|
364 |
infer_size,
|
365 |
max_det,
|
|
|
366 |
yolo_model=f"{model_name}.pt",
|
367 |
)
|
|
|
368 |
# 检测参数
|
369 |
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
|
370 |
conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
|
@@ -520,9 +543,11 @@ def yolo_det_img(
|
|
520 |
|
521 |
|
522 |
# YOLOv8图片分类函数
|
523 |
-
def yolo_cls_img(img_path, model_name):
|
524 |
# 模型加载
|
525 |
-
predict_results = model_cls_loading(
|
|
|
|
|
526 |
|
527 |
det_img = Image.open(img_path)
|
528 |
clas_ratio_list = predict_results.probs.top5conf.tolist()
|
@@ -572,8 +597,6 @@ def main(args):
|
|
572 |
button_secondary_background_fill_hover="*neutral_200",
|
573 |
)
|
574 |
|
575 |
-
custom_css = GYD_CSS
|
576 |
-
|
577 |
# ------------ Gradio Blocks ------------
|
578 |
with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
|
579 |
with gr.Row():
|
@@ -581,110 +604,203 @@ def main(args):
|
|
581 |
with gr.Row():
|
582 |
gr.Markdown(GYD_SUB_TITLE)
|
583 |
with gr.Row():
|
584 |
-
|
585 |
-
|
586 |
-
|
|
|
587 |
with gr.Column(scale=1):
|
588 |
with gr.Row():
|
589 |
-
inputs_img = gr.Image(
|
|
|
|
|
590 |
with gr.Row():
|
591 |
-
device_opt = gr.Radio(
|
|
|
|
|
|
|
|
|
592 |
with gr.Row():
|
593 |
-
inputs_model = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
594 |
with gr.Accordion("高级设置", open=True):
|
595 |
with gr.Row():
|
596 |
-
inputs_size = gr.Slider(
|
597 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
with gr.Row():
|
599 |
-
input_conf = gr.Slider(
|
600 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
with gr.Row():
|
602 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
603 |
with gr.Row():
|
604 |
gr.ClearButton(inputs_img, value="清除")
|
605 |
-
det_btn_img = gr.Button(
|
|
|
|
|
|
|
|
|
606 |
with gr.Column(scale=1):
|
607 |
# with gr.Row():
|
608 |
# outputs_img = gr.Image(type="pil", label="检测图片")
|
609 |
with gr.Row():
|
610 |
-
outputs_img_slider = ImageSlider(
|
|
|
|
|
611 |
with gr.Row():
|
612 |
outputs_imgfiles = gr.Files(label="图片下载")
|
613 |
with gr.Row():
|
614 |
outputs_objSize = gr.Label(label="目标尺寸占比统计")
|
615 |
with gr.Row():
|
616 |
outputs_clsSize = gr.Label(label="类别检测占比统计")
|
|
|
|
|
617 |
with gr.Row():
|
618 |
gr.Examples(
|
619 |
examples=EXAMPLES_DET,
|
620 |
fn=yolo_det_img,
|
621 |
inputs=[
|
622 |
-
inputs_img,
|
623 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
# outputs=[outputs_img, outputs_objSize, outputs_clsSize],
|
625 |
-
cache_examples=False
|
|
|
626 |
|
627 |
-
|
628 |
-
|
|
|
629 |
with gr.Column(scale=1):
|
630 |
with gr.Row():
|
631 |
-
inputs_img_cls = gr.Image(
|
|
|
|
|
632 |
with gr.Row():
|
633 |
-
|
634 |
-
"
|
635 |
-
|
636 |
-
|
637 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
638 |
with gr.Row():
|
639 |
gr.ClearButton(inputs_img, value="清除")
|
640 |
-
det_btn_img_cls = gr.Button(
|
|
|
|
|
|
|
|
|
641 |
with gr.Column(scale=1):
|
642 |
with gr.Row():
|
643 |
outputs_img_cls = gr.Image(type="pil", label="检测图片")
|
644 |
with gr.Row():
|
645 |
outputs_ratio_cls = gr.Label(label="图像分类结果")
|
|
|
|
|
646 |
with gr.Row():
|
647 |
gr.Examples(
|
648 |
examples=EXAMPLES_CLAS,
|
649 |
fn=yolo_cls_img,
|
650 |
-
inputs=[
|
|
|
|
|
|
|
|
|
651 |
# outputs=[outputs_img_cls, outputs_ratio_cls],
|
652 |
-
cache_examples=False
|
653 |
-
|
654 |
|
655 |
with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"):
|
656 |
-
gr.
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
|
|
688 |
|
689 |
det_btn_img.click(
|
690 |
fn=yolo_det_img,
|
@@ -696,6 +812,7 @@ def main(args):
|
|
696 |
input_conf,
|
697 |
inputs_iou,
|
698 |
max_det,
|
|
|
699 |
obj_size,
|
700 |
],
|
701 |
outputs=[
|
@@ -708,7 +825,7 @@ def main(args):
|
|
708 |
|
709 |
det_btn_img_cls.click(
|
710 |
fn=yolo_cls_img,
|
711 |
-
inputs=[inputs_img_cls, inputs_model_cls],
|
712 |
outputs=[outputs_img_cls, outputs_ratio_cls],
|
713 |
)
|
714 |
|
@@ -726,4 +843,4 @@ if __name__ == "__main__":
|
|
726 |
favicon_path="./icon/logo.ico", # 网页图标
|
727 |
show_error=True, # 在浏览器控制台中显示错误信息
|
728 |
quiet=True, # 禁止大多数打印语句
|
729 |
-
)
|
|
|
1 |
+
# Gradio YOLOv8 Det v1.3.1
|
2 |
# 创建人:曾逸夫
|
3 |
+
# 创建时间:2024-01-03
|
4 |
+
# pip install gradio>=4.12.0
|
5 |
# python gradio_yolov8_det_v1.py
|
6 |
|
7 |
|
8 |
+
import __init__
|
9 |
import argparse
|
10 |
import csv
|
11 |
import random
|
|
|
37 |
|
38 |
from util.fonts_opt import is_fonts
|
39 |
|
|
|
|
|
|
|
40 |
# 文件后缀
|
41 |
suffix_list = [".csv", ".yaml"]
|
42 |
|
|
|
61 |
"""
|
62 |
|
63 |
EXAMPLES_DET = [
|
64 |
+
["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"],
|
65 |
+
["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, [], "所有尺寸"],
|
66 |
+
["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"],
|
67 |
[
|
68 |
"./img_examples/Millenial-at-work.jpg",
|
69 |
"yolov8x",
|
|
|
72 |
0.5,
|
73 |
0.5,
|
74 |
100,
|
75 |
+
[],
|
76 |
"所有尺寸",
|
77 |
],
|
78 |
+
["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, [], "所有尺寸"],
|
79 |
[
|
80 |
"./img_examples/Millenial-at-work.jpg",
|
81 |
"yolov8x-seg",
|
|
|
84 |
0.5,
|
85 |
0.5,
|
86 |
100,
|
87 |
+
[],
|
88 |
"所有尺寸",
|
89 |
],
|
90 |
]
|
91 |
|
92 |
EXAMPLES_CLAS = [
|
93 |
+
["./img_examples/img_clas/ILSVRC2012_val_00000008.JPEG", "cpu", "yolov8s-cls"],
|
94 |
+
["./img_examples/img_clas/ILSVRC2012_val_00000018.JPEG", "cpu", "yolov8l-cls"],
|
95 |
+
["./img_examples/img_clas/ILSVRC2012_val_00000023.JPEG", "cpu", "yolov8m-cls"],
|
96 |
+
["./img_examples/img_clas/ILSVRC2012_val_00000067.JPEG", "cpu", "yolov8m-cls"],
|
97 |
+
["./img_examples/img_clas/ILSVRC2012_val_00000077.JPEG", "cpu", "yolov8m-cls"],
|
98 |
+
["./img_examples/img_clas/ILSVRC2012_val_00000247.JPEG", "cpu", "yolov8m-cls"],
|
99 |
]
|
100 |
|
101 |
GYD_CSS = """#disp_image {
|
|
|
103 |
}"""
|
104 |
|
105 |
|
106 |
+
custom_css = "./gyd_style.css"
|
107 |
+
|
108 |
+
|
109 |
def parse_args(known=False):
|
110 |
+
parser = argparse.ArgumentParser(description=__init__.__version__)
|
111 |
parser.add_argument(
|
112 |
"--model_name", "-mn", default="yolov8s", type=str, help="model name"
|
113 |
)
|
|
|
318 |
|
319 |
# 目标检测和图像分割模型加载
|
320 |
def model_det_loading(
|
321 |
+
img_path,
|
322 |
+
device_opt,
|
323 |
+
conf,
|
324 |
+
iou,
|
325 |
+
infer_size,
|
326 |
+
max_det,
|
327 |
+
inputs_cls_name,
|
328 |
+
yolo_model="yolov8n.pt",
|
329 |
):
|
330 |
model = YOLO(yolo_model)
|
331 |
+
if inputs_cls_name == []:
|
332 |
+
inputs_cls_name = None
|
333 |
|
334 |
results = model(
|
335 |
source=img_path,
|
|
|
337 |
imgsz=infer_size,
|
338 |
conf=conf,
|
339 |
iou=iou,
|
340 |
+
classes=inputs_cls_name,
|
341 |
max_det=max_det,
|
342 |
)
|
343 |
results = list(results)[0]
|
|
|
345 |
|
346 |
|
347 |
# 图像分类模型加载
|
348 |
+
def model_cls_loading(img_path, device_opt, yolo_model="yolov8s-cls.pt"):
|
349 |
model = YOLO(yolo_model)
|
350 |
|
351 |
+
results = model(source=img_path, device=device_opt)
|
352 |
results = list(results)[0]
|
353 |
return results
|
354 |
|
355 |
|
356 |
# YOLOv8图片检测函数
|
357 |
def yolo_det_img(
|
358 |
+
img_path,
|
359 |
+
model_name,
|
360 |
+
device_opt,
|
361 |
+
infer_size,
|
362 |
+
conf,
|
363 |
+
iou,
|
364 |
+
max_det,
|
365 |
+
inputs_cls_name,
|
366 |
+
obj_size,
|
367 |
):
|
368 |
global model, model_name_tmp, device_tmp
|
369 |
|
|
|
384 |
iou,
|
385 |
infer_size,
|
386 |
max_det,
|
387 |
+
inputs_cls_name,
|
388 |
yolo_model=f"{model_name}.pt",
|
389 |
)
|
390 |
+
|
391 |
# 检测参数
|
392 |
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
|
393 |
conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
|
|
|
543 |
|
544 |
|
545 |
# YOLOv8图片分类函数
|
546 |
+
def yolo_cls_img(img_path, device_opt, model_name):
|
547 |
# 模型加载
|
548 |
+
predict_results = model_cls_loading(
|
549 |
+
img_path, device_opt, yolo_model=f"{model_name}.pt"
|
550 |
+
)
|
551 |
|
552 |
det_img = Image.open(img_path)
|
553 |
clas_ratio_list = predict_results.probs.top5conf.tolist()
|
|
|
597 |
button_secondary_background_fill_hover="*neutral_200",
|
598 |
)
|
599 |
|
|
|
|
|
600 |
# ------------ Gradio Blocks ------------
|
601 |
with gr.Blocks(theme=custom_theme, css=custom_css) as gyd:
|
602 |
with gr.Row():
|
|
|
604 |
with gr.Row():
|
605 |
gr.Markdown(GYD_SUB_TITLE)
|
606 |
with gr.Row():
|
607 |
+
with gr.Tabs():
|
608 |
+
with gr.TabItem("目标检测与图像分割"):
|
609 |
+
with gr.Row():
|
610 |
+
with gr.Group(elem_id="show_box"):
|
611 |
with gr.Column(scale=1):
|
612 |
with gr.Row():
|
613 |
+
inputs_img = gr.Image(
|
614 |
+
image_mode="RGB", type="filepath", label="原始图片"
|
615 |
+
)
|
616 |
with gr.Row():
|
617 |
+
device_opt = gr.Radio(
|
618 |
+
choices=["cpu", 0, 1, 2, 3],
|
619 |
+
value="cpu",
|
620 |
+
label="设备",
|
621 |
+
)
|
622 |
with gr.Row():
|
623 |
+
inputs_model = gr.Dropdown(
|
624 |
+
choices=model_names,
|
625 |
+
value=model_name,
|
626 |
+
type="value",
|
627 |
+
label="模型",
|
628 |
+
)
|
629 |
with gr.Accordion("高级设置", open=True):
|
630 |
with gr.Row():
|
631 |
+
inputs_size = gr.Slider(
|
632 |
+
320,
|
633 |
+
1600,
|
634 |
+
step=1,
|
635 |
+
value=inference_size,
|
636 |
+
label="推理尺寸",
|
637 |
+
)
|
638 |
+
max_det = gr.Slider(
|
639 |
+
1,
|
640 |
+
1000,
|
641 |
+
step=1,
|
642 |
+
value=max_detnum,
|
643 |
+
label="最大检测数",
|
644 |
+
)
|
645 |
with gr.Row():
|
646 |
+
input_conf = gr.Slider(
|
647 |
+
0,
|
648 |
+
1,
|
649 |
+
step=slider_step,
|
650 |
+
value=nms_conf,
|
651 |
+
label="置信度阈值",
|
652 |
+
)
|
653 |
+
inputs_iou = gr.Slider(
|
654 |
+
0,
|
655 |
+
1,
|
656 |
+
step=slider_step,
|
657 |
+
value=nms_iou,
|
658 |
+
label="IoU 阈值",
|
659 |
+
)
|
660 |
with gr.Row():
|
661 |
+
inputs_cls_name = gr.Dropdown(
|
662 |
+
choices=model_cls_name_cp,
|
663 |
+
value=[],
|
664 |
+
multiselect=True,
|
665 |
+
allow_custom_value=True,
|
666 |
+
type="index",
|
667 |
+
label="类别选择",
|
668 |
+
)
|
669 |
+
with gr.Row():
|
670 |
+
obj_size = gr.Radio(
|
671 |
+
choices=["所有尺寸", "小目标", "中目标", "大目标"],
|
672 |
+
value="所有尺寸",
|
673 |
+
label="目标尺寸",
|
674 |
+
)
|
675 |
with gr.Row():
|
676 |
gr.ClearButton(inputs_img, value="清除")
|
677 |
+
det_btn_img = gr.Button(
|
678 |
+
value="检测", variant="primary"
|
679 |
+
)
|
680 |
+
|
681 |
+
with gr.Group(elem_id="show_box"):
|
682 |
with gr.Column(scale=1):
|
683 |
# with gr.Row():
|
684 |
# outputs_img = gr.Image(type="pil", label="检测图片")
|
685 |
with gr.Row():
|
686 |
+
outputs_img_slider = ImageSlider(
|
687 |
+
position=0.5, label="检测图片"
|
688 |
+
)
|
689 |
with gr.Row():
|
690 |
outputs_imgfiles = gr.Files(label="图片下载")
|
691 |
with gr.Row():
|
692 |
outputs_objSize = gr.Label(label="目标尺寸占比统计")
|
693 |
with gr.Row():
|
694 |
outputs_clsSize = gr.Label(label="类别检测占比统计")
|
695 |
+
|
696 |
+
with gr.Group(elem_id="show_box"):
|
697 |
with gr.Row():
|
698 |
gr.Examples(
|
699 |
examples=EXAMPLES_DET,
|
700 |
fn=yolo_det_img,
|
701 |
inputs=[
|
702 |
+
inputs_img,
|
703 |
+
inputs_model,
|
704 |
+
device_opt,
|
705 |
+
inputs_size,
|
706 |
+
input_conf,
|
707 |
+
inputs_iou,
|
708 |
+
max_det,
|
709 |
+
inputs_cls_name,
|
710 |
+
obj_size,
|
711 |
+
],
|
712 |
# outputs=[outputs_img, outputs_objSize, outputs_clsSize],
|
713 |
+
cache_examples=False,
|
714 |
+
)
|
715 |
|
716 |
+
with gr.TabItem("图像分类"):
|
717 |
+
with gr.Row():
|
718 |
+
with gr.Group(elem_id="show_box"):
|
719 |
with gr.Column(scale=1):
|
720 |
with gr.Row():
|
721 |
+
inputs_img_cls = gr.Image(
|
722 |
+
image_mode="RGB", type="filepath", label="原始图片"
|
723 |
+
)
|
724 |
with gr.Row():
|
725 |
+
device_opt_cls = gr.Radio(
|
726 |
+
choices=["cpu", "0", "1", "2", "3"],
|
727 |
+
value="cpu",
|
728 |
+
label="设备",
|
729 |
+
)
|
730 |
+
with gr.Row():
|
731 |
+
inputs_model_cls = gr.Dropdown(
|
732 |
+
choices=[
|
733 |
+
"yolov8n-cls",
|
734 |
+
"yolov8s-cls",
|
735 |
+
"yolov8l-cls",
|
736 |
+
"yolov8m-cls",
|
737 |
+
"yolov8x-cls",
|
738 |
+
],
|
739 |
+
value="yolov8s-cls",
|
740 |
+
type="value",
|
741 |
+
label="模型",
|
742 |
+
)
|
743 |
with gr.Row():
|
744 |
gr.ClearButton(inputs_img, value="清除")
|
745 |
+
det_btn_img_cls = gr.Button(
|
746 |
+
value="检测", variant="primary"
|
747 |
+
)
|
748 |
+
|
749 |
+
with gr.Group(elem_id="show_box"):
|
750 |
with gr.Column(scale=1):
|
751 |
with gr.Row():
|
752 |
outputs_img_cls = gr.Image(type="pil", label="检测图片")
|
753 |
with gr.Row():
|
754 |
outputs_ratio_cls = gr.Label(label="图像分类结果")
|
755 |
+
|
756 |
+
with gr.Group(elem_id="show_box"):
|
757 |
with gr.Row():
|
758 |
gr.Examples(
|
759 |
examples=EXAMPLES_CLAS,
|
760 |
fn=yolo_cls_img,
|
761 |
+
inputs=[
|
762 |
+
inputs_img_cls,
|
763 |
+
device_opt_cls,
|
764 |
+
inputs_model_cls,
|
765 |
+
],
|
766 |
# outputs=[outputs_img_cls, outputs_ratio_cls],
|
767 |
+
cache_examples=False,
|
768 |
+
)
|
769 |
|
770 |
with gr.Accordion("Gradio YOLOv8 Det 安装与使用教程"):
|
771 |
+
with gr.Group(elem_id="show_box"):
|
772 |
+
gr.Markdown(
|
773 |
+
"""## Gradio YOLOv8 Det 安装与使用教程
|
774 |
+
```shell
|
775 |
+
conda create -n yolo python==3.8
|
776 |
+
conda activate yolo # 进入环境
|
777 |
+
git clone https://gitee.com/CV_Lab/gradio-yolov8-det.git
|
778 |
+
cd gradio-yolov8-det
|
779 |
+
pip install -r ./requirements.txt -U
|
780 |
+
```
|
781 |
+
```shell
|
782 |
+
# 共享模式
|
783 |
+
python gradio_yolov8_det_v1.py -is # 在浏览器中以共享模式打开,https://**.gradio.app/
|
784 |
+
# 自定义模型配置
|
785 |
+
python gradio_yolov8_det_v1.py -mc ./model_config/model_name_all.yaml
|
786 |
+
# 自定义下拉框默认模型名称
|
787 |
+
python gradio_yolov8_det_v1.py -mn yolov8m
|
788 |
+
# 自定义类别名称
|
789 |
+
python gradio_yolov8_det_v1.py -cls ./cls_name/cls_name_zh.yaml (目标检测与图像分割)
|
790 |
+
python gradio_yolov8_det_v1.py -cin ./cls_name/cls_imgnet_name_zh.yaml (图像分类)
|
791 |
+
# 自定义NMS置信度阈值
|
792 |
+
python gradio_yolov8_det_v1.py -conf 0.8
|
793 |
+
# 自定义NMS IoU阈值
|
794 |
+
python gradio_yolov8_det_v1.py -iou 0.5
|
795 |
+
# 设置推理尺寸,默认为640
|
796 |
+
python gradio_yolov8_det_v1.py -isz 320
|
797 |
+
# 设置最大检测数,默认为50
|
798 |
+
python gradio_yolov8_det_v1.py -mdn 100
|
799 |
+
# 设置滑块步长,默认为0.05
|
800 |
+
python gradio_yolov8_det_v1.py -ss 0.01
|
801 |
+
```
|
802 |
+
"""
|
803 |
+
)
|
804 |
|
805 |
det_btn_img.click(
|
806 |
fn=yolo_det_img,
|
|
|
812 |
input_conf,
|
813 |
inputs_iou,
|
814 |
max_det,
|
815 |
+
inputs_cls_name,
|
816 |
obj_size,
|
817 |
],
|
818 |
outputs=[
|
|
|
825 |
|
826 |
det_btn_img_cls.click(
|
827 |
fn=yolo_cls_img,
|
828 |
+
inputs=[inputs_img_cls, device_opt_cls, inputs_model_cls],
|
829 |
outputs=[outputs_img_cls, outputs_ratio_cls],
|
830 |
)
|
831 |
|
|
|
843 |
favicon_path="./icon/logo.ico", # 网页图标
|
844 |
show_error=True, # 在浏览器控制台中显示错误信息
|
845 |
quiet=True, # 禁止大多数打印语句
|
846 |
+
)
|