Zengyf-CVer commited on
Commit
3801039
β€’
1 Parent(s): 7811598

app update

Browse files
Files changed (2) hide show
  1. README.md +2 -2
  2. app.py +17 -18
README.md CHANGED
@@ -4,9 +4,9 @@ emoji: πŸš€
4
  colorFrom: purple
5
  colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.0.1
8
  app_file: app.py
9
- pinned: false
10
  license: gpl-3.0
11
  ---
12
 
 
4
  colorFrom: purple
5
  colorTo: yellow
6
  sdk: gradio
7
+ sdk_version: 3.0.2
8
  app_file: app.py
9
+ pinned: true
10
  license: gpl-3.0
11
  ---
12
 
app.py CHANGED
@@ -317,16 +317,15 @@ def main(args):
317
  model_cls_name_cp = model_cls_name.copy() # class name
318
 
319
  # ------------------- Input Components -------------------
320
- inputs_img = gr.inputs.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image")
321
- inputs_device = gr.inputs.Radio(choices=["cuda:0", "cpu"], default=device, label="device")
322
-
323
- inputs_model = gr.inputs.Dropdown(choices=model_names, default=model_name, type="value", label="model")
324
- inputs_size = gr.inputs.Radio(choices=[320, 640, 1280], default=inference_size, label="inference size")
325
- input_conf = gr.inputs.Slider(0, 1, step=slider_step, default=nms_conf, label="confidence threshold")
326
- inputs_iou = gr.inputs.Slider(0, 1, step=slider_step, default=nms_iou, label="IoU threshold")
327
- inputs_maxnum = gr.inputs.Textbox(lines=1, placeholder="Maximum number of detections", default=max_detnum, label="Maximum number of detections")
328
- inputs_clsName = gr.inputs.CheckboxGroup(choices=model_cls_name, default=model_cls_name, type="index", label="category")
329
- inputs_opt = gr.inputs.CheckboxGroup(choices=["label", "pdf", "json"],
330
  default=["label", "pdf"],
331
  type="value",
332
  label="operate")
@@ -345,12 +344,12 @@ def main(args):
345
  ]
346
 
347
  # Output parameters
348
- outputs_img = gr.outputs.Image(type="pil", label="Detection image")
349
- outputs_json = gr.outputs.JSON(label="Detection information")
350
- outputs_pdf = gr.outputs.File(label="Download test report")
351
- outputs_df = gr.outputs.Dataframe(max_rows=5, overflow_row_behaviour="paginate", type="pandas", label="List of detection information")
352
- outputs_objSize = gr.outputs.Label(label="Object size ratio statistics")
353
- outputs_clsSize = gr.outputs.Label(label="Category detection proportion statistics")
354
 
355
  outputs = [outputs_img, outputs_objSize, outputs_clsSize, outputs_json, outputs_pdf, outputs_df]
356
 
@@ -412,8 +411,8 @@ def main(args):
412
  description=description,
413
  article="",
414
  # examples=examples,
415
- theme="seafoam",
416
- flagging_dir="run", # output directory
417
  ).launch(
418
  inbrowser=True, # Automatically open default browser
419
  show_tips=True, # Automatically display the latest features of gradio
 
317
  model_cls_name_cp = model_cls_name.copy() # class name
318
 
319
  # ------------------- Input Components -------------------
320
+ inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image")
321
+ inputs_device = gr.Radio(choices=["cuda:0", "cpu"], default=device, label="device")
322
+ inputs_model = gr.Dropdown(choices=model_names, default=model_name, type="value", label="model")
323
+ inputs_size = gr.Radio(choices=[320, 640, 1280], default=inference_size, label="inference size")
324
+ input_conf = gr.Slider(0, 1, step=slider_step, default=nms_conf, label="confidence threshold")
325
+ inputs_iou = gr.Slider(0, 1, step=slider_step, default=nms_iou, label="IoU threshold")
326
+ inputs_maxnum = gr.Textbox(lines=1, placeholder="Maximum number of detections", default=max_detnum, label="Maximum number of detections")
327
+ inputs_clsName = gr.CheckboxGroup(choices=model_cls_name, default=model_cls_name, type="index", label="category")
328
+ inputs_opt = gr.CheckboxGroup(choices=["label", "pdf", "json"],
 
329
  default=["label", "pdf"],
330
  type="value",
331
  label="operate")
 
344
  ]
345
 
346
  # Output parameters
347
+ outputs_img = gr.Image(type="pil", label="Detection image")
348
+ outputs_json = gr.JSON(label="Detection information")
349
+ outputs_pdf = gr.File(label="Download test report")
350
+ outputs_df = gr.Dataframe(max_rows=5, overflow_row_behaviour="paginate", type="pandas", label="List of detection information")
351
+ outputs_objSize = gr.Label(label="Object size ratio statistics")
352
+ outputs_clsSize = gr.Label(label="Category detection proportion statistics")
353
 
354
  outputs = [outputs_img, outputs_objSize, outputs_clsSize, outputs_json, outputs_pdf, outputs_df]
355
 
 
411
  description=description,
412
  article="",
413
  # examples=examples,
414
+ # theme="seafoam",
415
+ # flagging_dir="run", # output directory
416
  ).launch(
417
  inbrowser=True, # Automatically open default browser
418
  show_tips=True, # Automatically display the latest features of gradio