# Gradio YOLOv5 Det v0.3 # author:Zeng Yifu(曾逸夫) # creation time:2022-05-09 # email:zyfiy1314@163.com # Project homepage:https://gitee.com/CV_Lab/gradio_yolov5_det import os os.system("pip install gradio==2.9.4") import argparse import csv import json import sys from pathlib import Path import pandas as pd import gradio as gr import torch import yaml from PIL import Image, ImageDraw, ImageFont from util.fonts_opt import is_fonts from util.pdf_opt import pdf_generate ROOT_PATH = sys.path[0] # root directory # model path model_path = "ultralytics/yolov5" # Gradio YOLOv5 Det version GYD_VERSION = "Gradio YOLOv5 Det v0.3" # model name temporary variable model_name_tmp = "" # Device temporary variables device_tmp = "" # File extension suffix_list = [".csv", ".yaml"] # font size FONTSIZE = 25 def parse_args(known=False): parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.3") parser.add_argument("--source", "-src", default="upload", type=str, help="input source") parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool") parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name") parser.add_argument( "--model_cfg", "-mc", default="./model_config/model_name_p5_p6_all.yaml", type=str, help="model config", ) parser.add_argument( "--cls_name", "-cls", default="./cls_name/cls_name_zh.yaml", type=str, help="cls name", ) parser.add_argument( "--nms_conf", "-conf", default=0.5, type=float, help="model NMS confidence threshold", ) parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold") parser.add_argument( "--device", "-dev", default="cuda:0", type=str, help="cuda or cpu", ) parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size") parser.add_argument("--max_detnum", "-mdn", default="50", type=str, help="model max det num") args = parser.parse_known_args()[0] if known else parser.parse_args() return args # yaml file parsing def yaml_parse(file_path): return yaml.safe_load(open(file_path, encoding="utf-8").read()) # yaml csv file parsing def yaml_csv(file_path, file_tag): file_suffix = Path(file_path).suffix if file_suffix == suffix_list[0]: # model name file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv version elif file_suffix == suffix_list[1]: # model name file_names = yaml_parse(file_path).get(file_tag) # yaml version else: print(f"{file_path} is not in the correct format! Program exits!") sys.exit() return file_names # model loading def model_loading(model_name, device): # load model model = torch.hub.load( model_path, model_name, force_reload=True, device=device, _verbose=False ) return model # check information def export_json(results, model, img_size): return [ [ { "id": i, "class": int(result[i][5]), # "class_name": model.model.names[int(result[i][5])], "class_name": model_cls_name_cp[int(result[i][5])], "normalized_box": { "x0": round(result[i][:4].tolist()[0], 6), "y0": round(result[i][:4].tolist()[1], 6), "x1": round(result[i][:4].tolist()[2], 6), "y1": round(result[i][:4].tolist()[3], 6),}, "confidence": round(float(result[i][4]), 2), "fps": round(1000 / float(results.t[1]), 2), "width": img_size[0], "height": img_size[1],} for i in range(len(result))] for result in results.xyxyn] # frame conversion def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt): img_pil = ImageDraw.Draw(img) img_pil.rectangle(xyxy, fill=None, outline="green") # bounding box if "label" in opt: text_w, text_h = textFont.getsize(countdown_msg) # Label size img_pil.rectangle( (xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h), fill="green", outline="green", ) # label background img_pil.multiline_text( (xyxy[0], xyxy[1]), countdown_msg, fill=(205, 250, 255), font=textFont, align="center", ) return img # YOLOv5 image detection function def yolo_det(img, device, model_name, inference_size, conf, iou, max_num, model_cls, opt): global model, model_name_tmp, device_tmp if model_name_tmp != model_name: # Model judgment to avoid repeated loading model_name_tmp = model_name model = model_loading(model_name_tmp, device) elif device_tmp != device: device_tmp = device model = model_loading(model_name_tmp, device) # -------------Model tuning ------------- model.conf = conf # NMS confidence threshold model.iou = iou # NMS IoU threshold model.max_det = int(max_num) # Maximum number of detection frames model.classes = model_cls # model classes results = model(img, size=inference_size) # detection dataframe = results.pandas().xyxy[0].round(2) img_size = img.size # frame size # ----------------Load fonts---------------- yaml_index = cls_name.index(".yaml") cls_name_lang = cls_name[yaml_index - 2:yaml_index] if cls_name_lang == "en": # Chinese textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) elif cls_name_lang in ["en", "ru", "es", "ar"]: # English, Russian, Spanish, Arabic textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) elif cls_name_lang == "ko": # Korean textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) for result in results.xyxyn: for i in range(len(result)): id = int(i) # instance ID obj_cls_index = int(result[i][5]) # category index obj_cls = model_cls_name_cp[obj_cls_index] # category # ------------ border coordinates ------------ x0 = float(result[i][:4].tolist()[0]) y0 = float(result[i][:4].tolist()[1]) x1 = float(result[i][:4].tolist()[2]) y1 = float(result[i][:4].tolist()[3]) # ------------ Actual coordinates of the border ------------ x0 = int(img_size[0] * x0) y0 = int(img_size[1] * y0) x1 = int(img_size[0] * x1) y1 = int(img_size[1] * y1) conf = float(result[i][4]) # confidence # fps = f"{(1000 / float(results.t[1])):.2f}" # FPS det_img = pil_draw( img, f"{id}-{obj_cls}:{conf:.2f}", textFont, [x0, y0, x1, y1], FONTSIZE, opt, ) det_json = export_json(results, model, img.size)[0] # Detection information # JSON formatting det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"), ensure_ascii=False) # -------pdf------- report = "./Det_Report.pdf" if "pdf" in opt: pdf_generate(f"{det_json_format}", report, GYD_VERSION) else: report = None if "json" not in opt: det_json = None return det_img, det_json, report, dataframe def main(args): gr.close_all() global model, model_cls_name_cp, cls_name slider_step = 0.05 # sliding step source = args.source img_tool = args.img_tool nms_conf = args.nms_conf nms_iou = args.nms_iou model_name = args.model_name model_cfg = args.model_cfg cls_name = args.cls_name device = args.device inference_size = args.inference_size max_detnum = args.max_detnum is_fonts(f"{ROOT_PATH}/fonts") # Check font files # model loading model = model_loading(model_name, device) model_names = yaml_csv(model_cfg, "model_names") # model names model_cls_name = yaml_csv(cls_name, "model_cls_name") # class name model_cls_name_cp = model_cls_name.copy() # class name # ------------------- Input Components ------------------- inputs_img = gr.inputs.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image") inputs_device = gr.inputs.Radio(choices=["cuda:0", "cpu"], default=device, label="device") inputs_model = gr.inputs.Dropdown(choices=model_names, default=model_name, type="value", label="model") inputs_size = gr.inputs.Radio(choices=[320, 640, 1280], default=inference_size, label="inference size") input_conf = gr.inputs.Slider(0, 1, step=slider_step, default=nms_conf, label="confidence threshold") inputs_iou = gr.inputs.Slider(0, 1, step=slider_step, default=nms_iou, label="IoU threshold") inputs_maxnum = gr.inputs.Textbox(lines=1, placeholder="Maximum number of detections", default=max_detnum, label="Maximum number of detections") inputs_clsName = gr.inputs.CheckboxGroup(choices=model_cls_name, default=model_cls_name, type="index", label="category") inputs_opt = gr.inputs.CheckboxGroup(choices=["label", "pdf", "json"], default=["label", "pdf"], type="value", label="action") # Input parameters inputs = [ inputs_img, # input image inputs_device, # device inputs_model, # model inputs_size, # inference size input_conf, # confidence threshold inputs_iou, # IoU threshold inputs_maxnum, # maximum number of detections inputs_clsName, # category inputs_opt, # detect operations ] # Output parameters outputs_img = gr.outputs.Image(type="pil", label="Detection image") outputs_json = gr.outputs.JSON(label="Detection information") outputs_pdf = gr.outputs.File(label="Download test report") outputs_df = gr.outputs.Dataframe(max_rows=5, overflow_row_behaviour="paginate", type="pandas", label="List of detection information") outputs = [outputs_img, outputs_json, outputs_pdf, outputs_df] # title title = "Gradio-based YOLOv5 general target detection system v0.3" # describe description = "