# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ General utils """ import contextlib import glob import inspect import logging import math import os import platform import random import re import shutil import signal import threading import time import urllib from datetime import datetime from itertools import repeat from multiprocessing.pool import ThreadPool from pathlib import Path from subprocess import check_output from typing import Optional from zipfile import ZipFile import cv2 import numpy as np import pandas as pd import pkg_resources as pkg import torch import torchvision import yaml from utils.downloads import gsutil_getsize from utils.metrics import box_iou, fitness FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory RANK = int(os.getenv('RANK', -1)) # Settings DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf torch.set_printoptions(linewidth=320, precision=5, profile='long') np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 pd.options.display.max_columns = 10 cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads os.environ['OMP_NUM_THREADS'] = str(NUM_THREADS) # OpenMP max threads (PyTorch and SciPy) def is_kaggle(): # Is environment a Kaggle Notebook? try: assert os.environ.get('PWD') == '/kaggle/working' assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' return True except AssertionError: return False def is_writeable(dir, test=False): # Return True if directory has write permissions, test opening a file with write permissions if test=True if not test: return os.access(dir, os.R_OK) # possible issues on Windows file = Path(dir) / 'tmp.txt' try: with open(file, 'w'): # open file with write permissions pass file.unlink() # remove file return True except OSError: return False def set_logging(name=None, verbose=VERBOSE): # Sets level and returns logger if is_kaggle(): for h in logging.root.handlers: logging.root.removeHandler(h) # remove all handlers associated with the root logger object rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR log = logging.getLogger(name) log.setLevel(level) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter("%(message)s")) handler.setLevel(level) log.addHandler(handler) set_logging() # run before defining LOGGER LOGGER = logging.getLogger("yolov5") # define globally (used in train.py, val.py, detect.py, etc.) def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. env = os.getenv(env_var) if env: path = Path(env) # use environment variable else: cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable path.mkdir(exist_ok=True) # make if required return path CONFIG_DIR = user_config_dir() # Ultralytics settings dir class Profile(contextlib.ContextDecorator): # Usage: @Profile() decorator or 'with Profile():' context manager def __enter__(self): self.start = time.time() def __exit__(self, type, value, traceback): print(f'Profile results: {time.time() - self.start:.5f}s') class Timeout(contextlib.ContextDecorator): # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): self.seconds = int(seconds) self.timeout_message = timeout_msg self.suppress = bool(suppress_timeout_errors) def _timeout_handler(self, signum, frame): raise TimeoutError(self.timeout_message) def __enter__(self): if platform.system() != 'Windows': # not supported on Windows signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM signal.alarm(self.seconds) # start countdown for SIGALRM to be raised def __exit__(self, exc_type, exc_val, exc_tb): if platform.system() != 'Windows': signal.alarm(0) # Cancel SIGALRM if it's scheduled if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError return True class WorkingDirectory(contextlib.ContextDecorator): # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager def __init__(self, new_dir): self.dir = new_dir # new dir self.cwd = Path.cwd().resolve() # current dir def __enter__(self): os.chdir(self.dir) def __exit__(self, exc_type, exc_val, exc_tb): os.chdir(self.cwd) def try_except(func): # try-except function. Usage: @try_except decorator def handler(*args, **kwargs): try: func(*args, **kwargs) except Exception as e: print(e) return handler def threaded(func): # Multi-threads a target function and returns thread. Usage: @threaded decorator def wrapper(*args, **kwargs): thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) thread.start() return thread return wrapper def methods(instance): # Get class/instance methods return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] def print_args(args: Optional[dict] = None, show_file=True, show_fcn=False): # Print function arguments (optional args dict) x = inspect.currentframe().f_back # previous frame file, _, fcn, _, _ = inspect.getframeinfo(x) if args is None: # get args automatically args, _, _, frm = inspect.getargvalues(x) args = {k: v for k, v in frm.items() if k in args} s = (f'{Path(file).stem}: ' if show_file else '') + (f'{fcn}: ' if show_fcn else '') LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items())) def init_seeds(seed=0, deterministic=False): # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible import torch.backends.cudnn as cudnn if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213 torch.use_deterministic_algorithms(True) os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' # os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False) # torch.cuda.manual_seed(seed) # torch.cuda.manual_seed_all(seed) # for multi GPU, exception safe def intersect_dicts(da, db, exclude=()): # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} def get_latest_run(search_dir='.'): # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) return max(last_list, key=os.path.getctime) if last_list else '' def is_docker(): # Is environment a Docker container? return Path('/workspace').exists() # or Path('/.dockerenv').exists() def is_colab(): # Is environment a Google Colab instance? try: import google.colab return True except ImportError: return False def is_pip(): # Is file in a pip package? return 'site-packages' in Path(__file__).resolve().parts def is_ascii(s=''): # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) s = str(s) # convert list, tuple, None, etc. to str return len(s.encode().decode('ascii', 'ignore')) == len(s) def is_chinese(s='人工智能'): # Is string composed of any Chinese characters? return bool(re.search('[\u4e00-\u9fff]', str(s))) def emojis(str=''): # Return platform-dependent emoji-safe version of string return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str def file_age(path=__file__): # Return days since last file update dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta return dt.days # + dt.seconds / 86400 # fractional days def file_date(path=__file__): # Return human-readable file modification date, i.e. '2021-3-26' t = datetime.fromtimestamp(Path(path).stat().st_mtime) return f'{t.year}-{t.month}-{t.day}' def file_size(path): # Return file/dir size (MB) mb = 1 << 20 # bytes to MiB (1024 ** 2) path = Path(path) if path.is_file(): return path.stat().st_size / mb elif path.is_dir(): return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb else: return 0.0 def check_online(): # Check internet connectivity import socket try: socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility return True except OSError: return False def git_describe(path=ROOT): # path must be a directory # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe try: assert (Path(path) / '.git').is_dir() return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1] except Exception: return '' @try_except @WorkingDirectory(ROOT) def check_git_status(): # Recommend 'git pull' if code is out of date msg = ', for updates see https://github.com/ultralytics/yolov5' s = colorstr('github: ') # string assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg assert not is_docker(), s + 'skipping check (Docker image)' + msg assert check_online(), s + 'skipping check (offline)' + msg cmd = 'git fetch && git config --get remote.origin.url' url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind if n > 0: s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update." else: s += f'up to date with {url} ✅' LOGGER.info(emojis(s)) # emoji-safe def check_python(minimum='3.7.0'): # Check current python version vs. required python version check_version(platform.python_version(), minimum, name='Python ', hard=True) def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): # Check version vs. required version current, minimum = (pkg.parse_version(x) for x in (current, minimum)) result = (current == minimum) if pinned else (current >= minimum) # bool s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string if hard: assert result, s # assert min requirements met if verbose and not result: LOGGER.warning(s) return result @try_except def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=()): # Check installed dependencies meet requirements (pass *.txt file or list of packages) prefix = colorstr('red', 'bold', 'requirements:') check_python() # check python version if isinstance(requirements, (str, Path)): # requirements.txt file file = Path(requirements) assert file.exists(), f"{prefix} {file.resolve()} not found, check failed." with file.open() as f: requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] else: # list or tuple of packages requirements = [x for x in requirements if x not in exclude] n = 0 # number of packages updates for i, r in enumerate(requirements): try: pkg.require(r) except Exception: # DistributionNotFound or VersionConflict if requirements not met s = f"{prefix} {r} not found and is required by YOLOv5" if install and AUTOINSTALL: # check environment variable LOGGER.info(f"{s}, attempting auto-update...") try: assert check_online(), f"'pip install {r}' skipped (offline)" LOGGER.info(check_output(f'pip install "{r}" {cmds[i] if cmds else ""}', shell=True).decode()) n += 1 except Exception as e: LOGGER.warning(f'{prefix} {e}') else: LOGGER.info(f'{s}. Please install and rerun your command.') if n: # if packages updated source = file.resolve() if 'file' in locals() else requirements s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" LOGGER.info(emojis(s)) def check_img_size(imgsz, s=32, floor=0): # Verify image size is a multiple of stride s in each dimension if isinstance(imgsz, int): # integer i.e. img_size=640 new_size = max(make_divisible(imgsz, int(s)), floor) else: # list i.e. img_size=[640, 480] imgsz = list(imgsz) # convert to list if tuple new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] if new_size != imgsz: LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') return new_size def check_imshow(): # Check if environment supports image displays try: assert not is_docker(), 'cv2.imshow() is disabled in Docker environments' assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments' cv2.imshow('test', np.zeros((1, 1, 3))) cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) return True except Exception as e: LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') return False def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): # Check file(s) for acceptable suffix if file and suffix: if isinstance(suffix, str): suffix = [suffix] for f in file if isinstance(file, (list, tuple)) else [file]: s = Path(f).suffix.lower() # file suffix if len(s): assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" def check_yaml(file, suffix=('.yaml', '.yml')): # Search/download YAML file (if necessary) and return path, checking suffix return check_file(file, suffix) def check_file(file, suffix=''): # Search/download file (if necessary) and return path check_suffix(file, suffix) # optional file = str(file) # convert to str() if Path(file).is_file() or not file: # exists return file elif file.startswith(('http:/', 'https:/')): # download url = file # warning: Pathlib turns :// -> :/ file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth if Path(file).is_file(): LOGGER.info(f'Found {url} locally at {file}') # file already exists else: LOGGER.info(f'Downloading {url} to {file}...') torch.hub.download_url_to_file(url, file) assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check return file else: # search files = [] for d in 'data', 'models', 'utils': # search directories files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file assert len(files), f'File not found: {file}' # assert file was found assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique return files[0] # return file def check_font(font=FONT, progress=False): # Download font to CONFIG_DIR if necessary font = Path(font) file = CONFIG_DIR / font.name if not font.exists() and not file.exists(): url = "https://ultralytics.com/assets/" + font.name LOGGER.info(f'Downloading {url} to {file}...') torch.hub.download_url_to_file(url, str(file), progress=progress) def check_dataset(data, autodownload=True): # Download, check and/or unzip dataset if not found locally # Download (optional) extract_dir = '' if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1) data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) extract_dir, autodownload = data.parent, False # Read yaml (optional) if isinstance(data, (str, Path)): with open(data, errors='ignore') as f: data = yaml.safe_load(f) # dictionary # Checks for k in 'train', 'val', 'nc': assert k in data, emojis(f"data.yaml '{k}:' field missing ❌") if 'names' not in data: LOGGER.warning(emojis("data.yaml 'names:' field missing ⚠, assigning default names 'class0', 'class1', etc.")) data['names'] = [f'class{i}' for i in range(data['nc'])] # default names # Resolve paths path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' if not path.is_absolute(): path = (ROOT / path).resolve() for k in 'train', 'val', 'test': if data.get(k): # prepend path data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] # Parse yaml train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) if val: val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path if not all(x.exists() for x in val): LOGGER.info(emojis('\nDataset not found ⚠, missing paths %s' % [str(x) for x in val if not x.exists()])) if not s or not autodownload: raise Exception(emojis('Dataset not found ❌')) t = time.time() root = path.parent if 'path' in data else '..' # unzip directory i.e. '../' if s.startswith('http') and s.endswith('.zip'): # URL f = Path(s).name # filename LOGGER.info(f'Downloading {s} to {f}...') torch.hub.download_url_to_file(s, f) Path(root).mkdir(parents=True, exist_ok=True) # create root ZipFile(f).extractall(path=root) # unzip Path(f).unlink() # remove zip r = None # success elif s.startswith('bash '): # bash script LOGGER.info(f'Running {s} ...') r = os.system(s) else: # python script r = exec(s, {'yaml': data}) # return None dt = f'({round(time.time() - t, 1)}s)' s = f"success ✅ {dt}, saved to {colorstr('bold', root)}" if r in (0, None) else f"failure {dt} ❌" LOGGER.info(emojis(f"Dataset download {s}")) check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts return data # dictionary def check_amp(model): # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation from models.common import AutoShape, DetectMultiBackend def amp_allclose(model, im): # All close FP32 vs AMP results m = AutoShape(model, verbose=False) # model a = m(im).xywhn[0] # FP32 inference m.amp = True b = m(im).xywhn[0] # AMP inference return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance prefix = colorstr('AMP: ') device = next(model.parameters()).device # get model device if device.type == 'cpu': return False # AMP disabled on CPU f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3)) try: assert amp_allclose(model, im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im) LOGGER.info(emojis(f'{prefix}checks passed ✅')) return True except Exception: help_url = 'https://github.com/ultralytics/yolov5/issues/7908' LOGGER.warning(emojis(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')) return False def url2file(url): # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3): # Multi-threaded file download and unzip function, used in data.yaml for autodownload def download_one(url, dir): # Download 1 file success = True f = dir / Path(url).name # filename if Path(url).is_file(): # exists in current path Path(url).rename(f) # move to dir elif not f.exists(): LOGGER.info(f'Downloading {url} to {f}...') for i in range(retry + 1): if curl: s = 'sS' if threads > 1 else '' # silent r = os.system(f'curl -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue success = r == 0 else: torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download success = f.is_file() if success: break elif i < retry: LOGGER.warning(f'Download failure, retrying {i + 1}/{retry} {url}...') else: LOGGER.warning(f'Failed to download {url}...') if unzip and success and f.suffix in ('.zip', '.gz'): LOGGER.info(f'Unzipping {f}...') if f.suffix == '.zip': ZipFile(f).extractall(path=dir) # unzip elif f.suffix == '.gz': os.system(f'tar xfz {f} --directory {f.parent}') # unzip if delete: f.unlink() # remove zip dir = Path(dir) dir.mkdir(parents=True, exist_ok=True) # make directory if threads > 1: pool = ThreadPool(threads) pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded pool.close() pool.join() else: for u in [url] if isinstance(url, (str, Path)) else url: download_one(u, dir) def make_divisible(x, divisor): # Returns nearest x divisible by divisor if isinstance(divisor, torch.Tensor): divisor = int(divisor.max()) # to int return math.ceil(x / divisor) * divisor def clean_str(s): # Cleans a string by replacing special characters with underscore _ return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s) def one_cycle(y1=0.0, y2=1.0, steps=100): # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 def colorstr(*input): # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string colors = { 'black': '\033[30m', # basic colors 'red': '\033[31m', 'green': '\033[32m', 'yellow': '\033[33m', 'blue': '\033[34m', 'magenta': '\033[35m', 'cyan': '\033[36m', 'white': '\033[37m', 'bright_black': '\033[90m', # bright colors 'bright_red': '\033[91m', 'bright_green': '\033[92m', 'bright_yellow': '\033[93m', 'bright_blue': '\033[94m', 'bright_magenta': '\033[95m', 'bright_cyan': '\033[96m', 'bright_white': '\033[97m', 'end': '\033[0m', # misc 'bold': '\033[1m', 'underline': '\033[4m'} return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] def labels_to_class_weights(labels, nc=80): # Get class weights (inverse frequency) from training labels if labels[0] is None: # no labels loaded return torch.Tensor() labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO classes = labels[:, 0].astype(int) # labels = [class xywh] weights = np.bincount(classes, minlength=nc) # occurrences per class # Prepend gridpoint count (for uCE training) # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start weights[weights == 0] = 1 # replace empty bins with 1 weights = 1 / weights # number of targets per class weights /= weights.sum() # normalize return torch.from_numpy(weights).float() def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): # Produces image weights based on class_weights and image contents # Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels]) return (class_weights.reshape(1, nc) * class_counts).sum(1) def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet return [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y return y def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right if clip: clip_coords(x, (h - eps, w - eps)) # warning: inplace clip y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center y[:, 2] = (x[:, 2] - x[:, 0]) / w # width y[:, 3] = (x[:, 3] - x[:, 1]) / h # height return y def xyn2xy(x, w=640, h=640, padw=0, padh=0): # Convert normalized segments into pixel segments, shape (n,2) y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = w * x[:, 0] + padw # top left x y[:, 1] = h * x[:, 1] + padh # top left y return y def segment2box(segment, width=640, height=640): # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) x, y = segment.T # segment xy inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) x, y, = x[inside], y[inside] return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy def segments2boxes(segments): # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) boxes = [] for s in segments: x, y = s.T # segment xy boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy return xyxy2xywh(np.array(boxes)) # cls, xywh def resample_segments(segments, n=1000): # Up-sample an (n,2) segment for i, s in enumerate(segments): s = np.concatenate((s, s[0:1, :]), axis=0) x = np.linspace(0, len(s) - 1, n) xp = np.arange(len(s)) segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy return segments def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def clip_coords(boxes, shape): # Clip bounding xyxy bounding boxes to image shape (height, width) if isinstance(boxes, torch.Tensor): # faster individually boxes[:, 0].clamp_(0, shape[1]) # x1 boxes[:, 1].clamp_(0, shape[0]) # y1 boxes[:, 2].clamp_(0, shape[1]) # x2 boxes[:, 3].clamp_(0, shape[0]) # y2 else: # np.array (faster grouped) boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, labels=(), max_det=300): """Non-Maximum Suppression (NMS) on inference results to reject overlapping bounding boxes Returns: list of detections, on (n,6) tensor per image [xyxy, conf, cls] """ bs = prediction.shape[0] # batch size nc = prediction.shape[2] - 5 # number of classes xc = prediction[..., 4] > conf_thres # candidates # Checks assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' # Settings # min_wh = 2 # (pixels) minimum box width and height max_wh = 7680 # (pixels) maximum box width and height max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() time_limit = 0.3 + 0.03 * bs # seconds to quit after redundant = True # require redundant detections multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) merge = False # use merge-NMS t = time.time() output = [torch.zeros((0, 6), device=prediction.device)] * bs for xi, x in enumerate(prediction): # image index, image inference # Apply constraints # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height x = x[xc[xi]] # confidence # Cat apriori labels if autolabelling if labels and len(labels[xi]): lb = labels[xi] v = torch.zeros((len(lb), nc + 5), device=x.device) v[:, :4] = lb[:, 1:5] # box v[:, 4] = 1.0 # conf v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls x = torch.cat((x, v), 0) # If none remain process next image if not x.shape[0]: continue # Compute conf x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) else: # best class only conf, j = x[:, 5:].max(1, keepdim=True) x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] # Filter by class if classes is not None: x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # Check shape n = x.shape[0] # number of boxes if not n: # no boxes continue elif n > max_nms: # excess boxes x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence # Batched NMS c = x[:, 5:6] * (0 if agnostic else max_wh) # classes boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS if i.shape[0] > max_det: # limit detections i = i[:max_det] if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes if redundant: i = i[iou.sum(1) > 1] # require redundancy output[xi] = x[i] if (time.time() - t) > time_limit: LOGGER.warning(f'WARNING: NMS time limit {time_limit:.3f}s exceeded') break # time limit exceeded return output def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() # Strip optimizer from 'f' to finalize training, optionally save as 's' x = torch.load(f, map_location=torch.device('cpu')) if x.get('ema'): x['model'] = x['ema'] # replace model with ema for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys x[k] = None x['epoch'] = -1 x['model'].half() # to FP16 for p in x['model'].parameters(): p.requires_grad = False torch.save(x, s or f) mb = os.path.getsize(s or f) / 1E6 # filesize LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')): evolve_csv = save_dir / 'evolve.csv' evolve_yaml = save_dir / 'hyp_evolve.yaml' keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps] keys = tuple(x.strip() for x in keys) vals = results + tuple(hyp.values()) n = len(keys) # Download (optional) if bucket: url = f'gs://{bucket}/evolve.csv' if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0): os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local # Log to evolve.csv s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header with open(evolve_csv, 'a') as f: f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') # Save yaml with open(evolve_yaml, 'w') as f: data = pd.read_csv(evolve_csv) data = data.rename(columns=lambda x: x.strip()) # strip keys i = np.argmax(fitness(data.values[:, :4])) # generations = len(data) f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' + f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False) # Print to screen LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix + ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}' for x in vals) + '\n\n') if bucket: os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload def apply_classifier(x, model, img, im0): # Apply a second stage classifier to YOLO outputs # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() im0 = [im0] if isinstance(im0, np.ndarray) else im0 for i, d in enumerate(x): # per image if d is not None and len(d): d = d.clone() # Reshape and pad cutouts b = xyxy2xywh(d[:, :4]) # boxes b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad d[:, :4] = xywh2xyxy(b).long() # Rescale boxes from img_size to im0 size scale_coords(img.shape[2:], d[:, :4], im0[i].shape) # Classes pred_cls1 = d[:, 5].long() ims = [] for a in d: cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] im = cv2.resize(cutout, (224, 224)) # BGR im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 im /= 255 # 0 - 255 to 0.0 - 1.0 ims.append(im) pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections return x def increment_path(path, exist_ok=False, sep='', mkdir=False): # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. path = Path(path) # os-agnostic if path.exists() and not exist_ok: path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') # Method 1 for n in range(2, 9999): p = f'{path}{sep}{n}{suffix}' # increment path if not os.path.exists(p): # break path = Path(p) # Method 2 (deprecated) # dirs = glob.glob(f"{path}{sep}*") # similar paths # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs] # i = [int(m.groups()[0]) for m in matches if m] # indices # n = max(i) + 1 if i else 2 # increment number # path = Path(f"{path}{sep}{n}{suffix}") # increment path if mkdir: path.mkdir(parents=True, exist_ok=True) # make directory return path # OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------ imshow_ = cv2.imshow # copy to avoid recursion errors def imread(path, flags=cv2.IMREAD_COLOR): return cv2.imdecode(np.fromfile(path, np.uint8), flags) def imwrite(path, im): try: cv2.imencode(Path(path).suffix, im)[1].tofile(path) return True except Exception: return False def imshow(path, im): imshow_(path.encode('unicode_escape').decode(), im) cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine # Variables ------------------------------------------------------------------------------------------------------------ NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm