Spaces:
Runtime error
Runtime error
initial commit
Browse files- app.py +240 -0
- chat_history/empty_chat_hist.json +0 -0
- requirements.txt +12 -0
- tmp_docs/empty.txt +0 -0
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import required libraries
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.document_loaders import (
|
4 |
+
UnstructuredWordDocumentLoader,
|
5 |
+
PyMuPDFLoader,
|
6 |
+
UnstructuredFileLoader,
|
7 |
+
)
|
8 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
from langchain.vectorstores import Pinecone
|
11 |
+
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
12 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
13 |
+
from langchain.chains.query_constructor.base import AttributeInfo
|
14 |
+
import os
|
15 |
+
import langchain
|
16 |
+
import pinecone
|
17 |
+
import streamlit as st
|
18 |
+
import shutil
|
19 |
+
import json
|
20 |
+
import re
|
21 |
+
|
22 |
+
OPENAI_API_KEY = ''
|
23 |
+
PINECONE_API_KEY = ''
|
24 |
+
PINECONE_API_ENV = ''
|
25 |
+
langchain.verbose = False
|
26 |
+
|
27 |
+
@st.cache_data()
|
28 |
+
def init():
|
29 |
+
pinecone_index_name = ''
|
30 |
+
pinecone_namespace = ''
|
31 |
+
docsearch_ready = False
|
32 |
+
directory_name = 'tmp_docs'
|
33 |
+
return pinecone_index_name, pinecone_namespace, docsearch_ready, directory_name
|
34 |
+
|
35 |
+
|
36 |
+
@st.cache_data()
|
37 |
+
def save_file(files):
|
38 |
+
# Remove existing files in the directory
|
39 |
+
if os.path.exists(directory_name):
|
40 |
+
for filename in os.listdir(directory_name):
|
41 |
+
file_path = os.path.join(directory_name, filename)
|
42 |
+
try:
|
43 |
+
if os.path.isfile(file_path):
|
44 |
+
os.remove(file_path)
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error: {e}")
|
47 |
+
# Save the new file with original filename
|
48 |
+
if files is not None:
|
49 |
+
for file in files:
|
50 |
+
file_name = file.name
|
51 |
+
file_path = os.path.join(directory_name, file_name)
|
52 |
+
with open(file_path, 'wb') as f:
|
53 |
+
shutil.copyfileobj(file, f)
|
54 |
+
|
55 |
+
|
56 |
+
def load_files():
|
57 |
+
all_texts = []
|
58 |
+
n_files = 0
|
59 |
+
n_char = 0
|
60 |
+
n_texts = 0
|
61 |
+
|
62 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
63 |
+
chunk_size=400, chunk_overlap=50
|
64 |
+
)
|
65 |
+
for filename in os.listdir(directory_name):
|
66 |
+
file = os.path.join(directory_name, filename)
|
67 |
+
if os.path.isfile(file):
|
68 |
+
if file.endswith(".docx"):
|
69 |
+
loader = UnstructuredWordDocumentLoader(file)
|
70 |
+
elif file.endswith(".pdf"):
|
71 |
+
loader = PyMuPDFLoader(file)
|
72 |
+
else: # assume a pure text format and attempt to load it
|
73 |
+
loader = UnstructuredFileLoader(file)
|
74 |
+
data = loader.load()
|
75 |
+
metadata = data[0].metadata
|
76 |
+
fn = os.path.basename(metadata['source'])
|
77 |
+
author = os.path.splitext(fn)[0]
|
78 |
+
data[0].metadata['author'] = author
|
79 |
+
texts = text_splitter.split_documents(data)
|
80 |
+
n_files += 1
|
81 |
+
n_char += len(data[0].page_content)
|
82 |
+
n_texts += len(texts)
|
83 |
+
all_texts.extend(texts)
|
84 |
+
st.write(
|
85 |
+
f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents."
|
86 |
+
)
|
87 |
+
return all_texts, n_texts
|
88 |
+
|
89 |
+
|
90 |
+
@st.cache_resource()
|
91 |
+
def ingest(_all_texts, _embeddings, pinecone_index_name, pinecone_namespace):
|
92 |
+
docsearch = Pinecone.from_documents(
|
93 |
+
_all_texts, _embeddings, index_name=pinecone_index_name, namespace=pinecone_namespace)
|
94 |
+
return docsearch
|
95 |
+
|
96 |
+
|
97 |
+
def setup_retriever(docsearch, k, llm):
|
98 |
+
metadata_field_info = [
|
99 |
+
AttributeInfo(
|
100 |
+
name="author",
|
101 |
+
description="The author of the document/text/piece of context",
|
102 |
+
type="string or list[string]",
|
103 |
+
)
|
104 |
+
]
|
105 |
+
document_content_description = "Views/opions/proposals suggested by the author on one or more discussion points."
|
106 |
+
retriever = SelfQueryRetriever.from_llm(
|
107 |
+
llm, docsearch, document_content_description, metadata_field_info, verbose=True)
|
108 |
+
return retriever
|
109 |
+
|
110 |
+
|
111 |
+
def setup_docsearch(pinecone_index_name, pinecone_namespace, embeddings):
|
112 |
+
docsearch = []
|
113 |
+
n_texts = 0
|
114 |
+
# Load the pre-created Pinecone index.
|
115 |
+
# The index which has already be stored in pinecone.io as long-term memory
|
116 |
+
if pinecone_index_name in pinecone.list_indexes():
|
117 |
+
docsearch = Pinecone.from_existing_index(
|
118 |
+
index_name=pinecone_index_name, embedding=embeddings, text_key='text', namespace=pinecone_namespace)
|
119 |
+
index_client = pinecone.Index(pinecone_index_name)
|
120 |
+
# Get the index information
|
121 |
+
index_info = index_client.describe_index_stats()
|
122 |
+
n_texts = index_info['namespaces'][pinecone_namespace]['vector_count']
|
123 |
+
else:
|
124 |
+
raise ValueError('''Cannot find the specified Pinecone index.
|
125 |
+
Create one in pinecone.io or using, e.g.,
|
126 |
+
pinecone.create_index(
|
127 |
+
name=index_name, dimension=1536, metric="cosine", shards=1)''')
|
128 |
+
return docsearch, n_texts
|
129 |
+
|
130 |
+
|
131 |
+
def get_response(query, chat_history, CRqa):
|
132 |
+
result = CRqa({"question": query, "chat_history": chat_history})
|
133 |
+
return result['answer'], result['source_documents']
|
134 |
+
|
135 |
+
|
136 |
+
def setup_em_llm(OPENAI_API_KEY, temperature):
|
137 |
+
# Set up OpenAI embeddings
|
138 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
139 |
+
# Use Open AI LLM with gpt-3.5-turbo.
|
140 |
+
# Set the temperature to be 0 if you do not want it to make up things
|
141 |
+
llm = ChatOpenAI(temperature=temperature, model_name="gpt-3.5-turbo", streaming=True,
|
142 |
+
openai_api_key=OPENAI_API_KEY)
|
143 |
+
return embeddings, llm
|
144 |
+
|
145 |
+
|
146 |
+
def load_chat_history(CHAT_HISTORY_FILENAME):
|
147 |
+
try:
|
148 |
+
with open(CHAT_HISTORY_FILENAME, 'r') as f:
|
149 |
+
chat_history = json.load(f)
|
150 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
151 |
+
chat_history = []
|
152 |
+
return chat_history
|
153 |
+
|
154 |
+
|
155 |
+
def save_chat_history(chat_history, CHAT_HISTORY_FILENAME):
|
156 |
+
with open(CHAT_HISTORY_FILENAME, 'w') as f:
|
157 |
+
json.dump(chat_history, f)
|
158 |
+
|
159 |
+
|
160 |
+
pinecone_index_name, pinecone_namespace, docsearch_ready, directory_name = init()
|
161 |
+
|
162 |
+
|
163 |
+
def main(pinecone_index_name, pinecone_namespace, docsearch_ready):
|
164 |
+
docsearch_ready = False
|
165 |
+
chat_history = []
|
166 |
+
# Get user input of whether to use Pinecone or not
|
167 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
168 |
+
# create the radio buttons and text input fields
|
169 |
+
with col1:
|
170 |
+
r_ingest = st.radio(
|
171 |
+
'Ingest file(s)?', ('Yes', 'No'))
|
172 |
+
OPENAI_API_KEY = st.text_input(
|
173 |
+
"OpenAI API key:", type="password")
|
174 |
+
|
175 |
+
with col2:
|
176 |
+
PINECONE_API_KEY = st.text_input(
|
177 |
+
"Pinecone API key:", type="password")
|
178 |
+
PINECONE_API_ENV = st.text_input(
|
179 |
+
"Pinecone API env:", type="password")
|
180 |
+
pinecone_index_name = st.text_input('Pinecone index:')
|
181 |
+
pinecone.init(api_key=PINECONE_API_KEY,
|
182 |
+
environment=PINECONE_API_ENV)
|
183 |
+
with col3:
|
184 |
+
pinecone_namespace = st.text_input('Pinecone namespace:')
|
185 |
+
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
186 |
+
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
187 |
+
|
188 |
+
if pinecone_index_name:
|
189 |
+
session_name = pinecone_index_name
|
190 |
+
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature)
|
191 |
+
if r_ingest.lower() == 'yes':
|
192 |
+
files = st.file_uploader(
|
193 |
+
'Upload Files', accept_multiple_files=True)
|
194 |
+
if files:
|
195 |
+
save_file(files)
|
196 |
+
all_texts, n_texts = load_files()
|
197 |
+
docsearch = ingest(all_texts, embeddings,
|
198 |
+
pinecone_index_name, pinecone_namespace)
|
199 |
+
docsearch_ready = True
|
200 |
+
else:
|
201 |
+
st.write(
|
202 |
+
'No data is to be ingested. Make sure the Pinecone index you provided contains data.')
|
203 |
+
docsearch, n_texts = setup_docsearch(pinecone_index_name, pinecone_namespace,
|
204 |
+
embeddings)
|
205 |
+
docsearch_ready = True
|
206 |
+
if docsearch_ready:
|
207 |
+
# number of sources (split-documents when ingesting files); default is 4
|
208 |
+
k = min([20, n_texts])
|
209 |
+
retriever = setup_retriever(docsearch, k, llm)
|
210 |
+
CRqa = load_qa_with_sources_chain(llm, chain_type="stuff")
|
211 |
+
|
212 |
+
st.title('Chatbot')
|
213 |
+
# Get user input
|
214 |
+
query = st.text_area('Enter your question:', height=10,
|
215 |
+
placeholder='Summarize the context.')
|
216 |
+
if query:
|
217 |
+
# Generate a reply based on the user input and chat history
|
218 |
+
CHAT_HISTORY_FILENAME = f"chat_history/{session_name}_chat_hist.json"
|
219 |
+
chat_history = load_chat_history(CHAT_HISTORY_FILENAME)
|
220 |
+
chat_history = [(user, bot)
|
221 |
+
for user, bot in chat_history]
|
222 |
+
docs = retriever.get_relevant_documents(query)
|
223 |
+
if not docs:
|
224 |
+
docs = docsearch.similarity_search(query)
|
225 |
+
result = CRqa.run(input_documents=docs, question=query)
|
226 |
+
reply = re.match(r'(.+?)\.\s*SOURCES:', result).group(1)
|
227 |
+
source = re.search(r'SOURCES:\s*(.+)', result).group(1)
|
228 |
+
# Update the chat history with the user input and system response
|
229 |
+
chat_history.append(('User', query))
|
230 |
+
chat_history.append(('Bot', reply))
|
231 |
+
save_chat_history(chat_history, CHAT_HISTORY_FILENAME)
|
232 |
+
latest_chats = chat_history[-4:]
|
233 |
+
chat_history_str = '\n'.join(
|
234 |
+
[f'{x[0]}: {x[1]}' for x in latest_chats])
|
235 |
+
st.text_area('Chat record:', value=chat_history_str, height=250)
|
236 |
+
|
237 |
+
|
238 |
+
if __name__ == '__main__':
|
239 |
+
main(pinecone_index_name, pinecone_namespace,
|
240 |
+
docsearch_ready)
|
chat_history/empty_chat_hist.json
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
openai
|
3 |
+
streamlit
|
4 |
+
pinecone-client
|
5 |
+
chromadb
|
6 |
+
unstructured
|
7 |
+
pdf2image
|
8 |
+
pytesseract
|
9 |
+
tiktoken
|
10 |
+
pymupdf
|
11 |
+
tabulate
|
12 |
+
lark
|
tmp_docs/empty.txt
ADDED
File without changes
|