badayvedat commited on
Commit
ae29df4
1 Parent(s): ea1edf1

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +160 -0
  2. LICENSE +21 -0
  3. README.md +1 -3
  4. app.py +115 -0
  5. assets/results.png +0 -0
  6. callbacks/base.py +35 -0
  7. config/audiosep_base.yaml +41 -0
  8. data/audiotext_dataset.py +91 -0
  9. data/datamodules.py +122 -0
  10. data/waveform_mixers.py +127 -0
  11. datafiles/template.json +8 -0
  12. environment.yml +326 -0
  13. losses.py +17 -0
  14. models/CLAP/__init__.py +0 -0
  15. models/CLAP/open_clip/__init__.py +25 -0
  16. models/CLAP/open_clip/bert.py +40 -0
  17. models/CLAP/open_clip/factory.py +277 -0
  18. models/CLAP/open_clip/feature_fusion.py +192 -0
  19. models/CLAP/open_clip/htsat.py +1308 -0
  20. models/CLAP/open_clip/linear_probe.py +66 -0
  21. models/CLAP/open_clip/loss.py +398 -0
  22. models/CLAP/open_clip/model.py +935 -0
  23. models/CLAP/open_clip/model_configs/HTSAT-base.json +23 -0
  24. models/CLAP/open_clip/model_configs/HTSAT-large.json +23 -0
  25. models/CLAP/open_clip/model_configs/HTSAT-tiny-win-1536.json +23 -0
  26. models/CLAP/open_clip/model_configs/HTSAT-tiny.json +23 -0
  27. models/CLAP/open_clip/model_configs/PANN-10.json +23 -0
  28. models/CLAP/open_clip/model_configs/PANN-14-fmax-18k.json +23 -0
  29. models/CLAP/open_clip/model_configs/PANN-14-fmax-8k-20s.json +23 -0
  30. models/CLAP/open_clip/model_configs/PANN-14-tiny-transformer.json +23 -0
  31. models/CLAP/open_clip/model_configs/PANN-14-win-1536.json +23 -0
  32. models/CLAP/open_clip/model_configs/PANN-14.json +23 -0
  33. models/CLAP/open_clip/model_configs/PANN-6.json +23 -0
  34. models/CLAP/open_clip/model_configs/RN101-quickgelu.json +22 -0
  35. models/CLAP/open_clip/model_configs/RN101.json +21 -0
  36. models/CLAP/open_clip/model_configs/RN50-quickgelu.json +22 -0
  37. models/CLAP/open_clip/model_configs/RN50.json +21 -0
  38. models/CLAP/open_clip/model_configs/RN50x16.json +21 -0
  39. models/CLAP/open_clip/model_configs/RN50x4.json +21 -0
  40. models/CLAP/open_clip/model_configs/ViT-B-16.json +16 -0
  41. models/CLAP/open_clip/model_configs/ViT-B-32-quickgelu.json +17 -0
  42. models/CLAP/open_clip/model_configs/ViT-B-32.json +16 -0
  43. models/CLAP/open_clip/model_configs/ViT-L-14.json +16 -0
  44. models/CLAP/open_clip/openai.py +156 -0
  45. models/CLAP/open_clip/pann_model.py +704 -0
  46. models/CLAP/open_clip/pretrained.py +167 -0
  47. models/CLAP/open_clip/timm_model.py +112 -0
  48. models/CLAP/open_clip/tokenizer.py +197 -0
  49. models/CLAP/open_clip/transform.py +45 -0
  50. models/CLAP/open_clip/utils.py +361 -0
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) Xubo Liu
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE
README.md CHANGED
@@ -8,6 +8,4 @@ sdk_version: 3.47.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ ---
 
 
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from threading import Thread
3
+
4
+ import gdown
5
+ import gradio as gr
6
+ import librosa
7
+ import numpy as np
8
+ import torch
9
+
10
+ from pipeline import build_audiosep
11
+
12
+ CHECKPOINTS_DIR = Path("checkpoint")
13
+
14
+ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
+
16
+ # The model will be loaded in the future
17
+ MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt"
18
+ MODEL = None
19
+
20
+
21
+ description = """
22
+ # AudioSep: Separate Anything You Describe
23
+ [[Project Page]](https://audio-agi.github.io/Separate-Anything-You-Describe) [[Paper]](https://audio-agi.github.io/Separate-Anything-You-Describe/AudioSep_arXiv.pdf) [[Code]](https://github.com/Audio-AGI/AudioSep)
24
+
25
+ We introduce AudioSep, a foundation model for open-domain sound separation with natural language queries.
26
+ AudioSep demonstrates strong separation performance and impressivezero-shot generalization ability on
27
+ numerous tasks such as audio event separation, musical instrument separation, and speech enhancement.
28
+ """
29
+
30
+
31
+ def get_model():
32
+ model = build_audiosep(
33
+ config_yaml="config/audiosep_base.yaml",
34
+ checkpoint_path=MODEL_NAME,
35
+ device=DEVICE,
36
+ )
37
+ return model
38
+
39
+
40
+ def inference(audio_file_path: str, text: str):
41
+ print(f"Separate audio from [{audio_file_path}] with textual query [{text}]")
42
+ mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True)
43
+
44
+ with torch.no_grad():
45
+ text = [text]
46
+
47
+ conditions = MODEL.query_encoder.get_query_embed(
48
+ modality="text", text=text, device=DEVICE
49
+ )
50
+
51
+ input_dict = {
52
+ "mixture": torch.Tensor(mixture)[None, None, :].to(DEVICE),
53
+ "condition": conditions,
54
+ }
55
+
56
+ sep_segment = MODEL.ss_model(input_dict)["waveform"]
57
+
58
+ sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy()
59
+
60
+ return 32000, np.round(sep_segment * 32767).astype(np.int16)
61
+
62
+
63
+ def download_models():
64
+ CHECKPOINTS_DIR.mkdir(exist_ok=True)
65
+ success_file = CHECKPOINTS_DIR / "_SUCCESS"
66
+
67
+ models = (
68
+ (
69
+ "https://drive.google.com/file/d/1wQuXThdATXrkmkPM2sRGaNapJ4mTqmlY/view?usp=sharing",
70
+ MODEL_NAME,
71
+ ),
72
+ (
73
+ "https://drive.google.com/file/d/11oj8_tPG6SXgw5fIEsZ5HiWZnJOrvdhw/view?usp=sharing",
74
+ CHECKPOINTS_DIR / "music_speech_audioset_epoch_15_esc_89.98.pt",
75
+ ),
76
+ )
77
+
78
+ def download(models):
79
+ for model_url, model_path in models:
80
+ gdown.download(model_url, str(model_path), quiet=False, fuzzy=True)
81
+
82
+ success_file.touch()
83
+
84
+ global MODEL
85
+ MODEL = get_model()
86
+ button.update(value="Separate", interactive=True)
87
+
88
+ if not success_file.exists():
89
+ thread = Thread(target=download, args=[models])
90
+ thread.start()
91
+
92
+
93
+ with gr.Blocks(title="AudioSep") as demo:
94
+ gr.Markdown(description)
95
+ with gr.Row():
96
+ with gr.Column():
97
+ input_audio = gr.Audio()
98
+ text = gr.Textbox()
99
+ with gr.Column():
100
+ with gr.Column():
101
+ output_audio = gr.Audio(scale=10)
102
+ button = gr.Button(
103
+ "Downloading the models...",
104
+ variant="primary",
105
+ scale=2,
106
+ size="lg",
107
+ interactive=False,
108
+ )
109
+ button.click(
110
+ fn=inference, inputs=[input_audio, text], outputs=[output_audio]
111
+ )
112
+
113
+ download_models()
114
+
115
+ demo.queue().launch(share=True)
assets/results.png ADDED
callbacks/base.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import lightning.pytorch as pl
3
+ from lightning.pytorch.utilities import rank_zero_only
4
+
5
+
6
+ class CheckpointEveryNSteps(pl.Callback):
7
+ def __init__(
8
+ self,
9
+ checkpoints_dir,
10
+ save_step_frequency,
11
+ ) -> None:
12
+ r"""Save a checkpoint every N steps.
13
+
14
+ Args:
15
+ checkpoints_dir (str): directory to save checkpoints
16
+ save_step_frequency (int): save checkpoint every N step
17
+ """
18
+
19
+ self.checkpoints_dir = checkpoints_dir
20
+ self.save_step_frequency = save_step_frequency
21
+
22
+ @rank_zero_only
23
+ def on_train_batch_end(self, *args, **kwargs) -> None:
24
+ r"""Save a checkpoint every N steps."""
25
+
26
+ trainer = args[0]
27
+ global_step = trainer.global_step
28
+
29
+ if global_step == 1 or global_step % self.save_step_frequency == 0:
30
+
31
+ ckpt_path = os.path.join(
32
+ self.checkpoints_dir,
33
+ "step={}.ckpt".format(global_step))
34
+ trainer.save_checkpoint(ckpt_path)
35
+ print("Save checkpoint to {}".format(ckpt_path))
config/audiosep_base.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_name: AudioSep
3
+
4
+ data:
5
+ datafiles:
6
+ - 'datafiles/template.json'
7
+
8
+ sampling_rate: 32000
9
+ segment_seconds: 5
10
+ loudness_norm:
11
+ lower_db: -10
12
+ higher_db: 10
13
+ max_mix_num: 2
14
+
15
+ model:
16
+ query_net: CLAP
17
+ condition_size: 512
18
+ model_type: ResUNet30
19
+ input_channels: 1
20
+ output_channels: 1
21
+ resume_checkpoint: ""
22
+ use_text_ratio: 1.0
23
+
24
+ train:
25
+ optimizer:
26
+ optimizer_type: AdamW
27
+ learning_rate: 1e-3
28
+ warm_up_steps: 10000
29
+ reduce_lr_steps: 1000000
30
+ lr_lambda_type: constant_warm_up
31
+ num_nodes: 1
32
+ num_workers: 6
33
+ loss_type: l1_wav
34
+ sync_batchnorm: True
35
+ batch_size_per_device: 12
36
+ steps_per_epoch: 10000 # Every 10000 steps is called an `epoch`.
37
+ evaluate_step_frequency: 10000 # Evaluate every #evaluate_step_frequency steps.
38
+ save_step_frequency: 20000 # Save every #save_step_frequency steps.
39
+ early_stop_steps: 10000001
40
+ random_seed: 1234
41
+
data/audiotext_dataset.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import random
3
+ import torch
4
+ import torchaudio
5
+ from torch.utils.data import Dataset
6
+
7
+
8
+ class AudioTextDataset(Dataset):
9
+ """Can sample data from audio-text databases
10
+ Params:
11
+ sampling_rate: audio sampling rate
12
+ max_clip_len: max length (seconds) of audio clip to be sampled
13
+ """
14
+ def __init__(
15
+ self,
16
+ datafiles=[''],
17
+ sampling_rate=32000,
18
+ max_clip_len=5,
19
+ ):
20
+ all_data_json = []
21
+ for datafile in datafiles:
22
+ with open(datafile, 'r') as fp:
23
+ data_json = json.load(fp)['data']
24
+ all_data_json.extend(data_json)
25
+ self.all_data_json = all_data_json
26
+
27
+ self.sampling_rate = sampling_rate
28
+ self.max_length = max_clip_len * sampling_rate
29
+
30
+ def __len__(self):
31
+ return len(self.all_data_json)
32
+
33
+ def _cut_or_randomcrop(self, waveform):
34
+ # waveform: [1, samples]
35
+ # random crop
36
+ if waveform.size(1) > self.max_length:
37
+ random_idx = random.randint(0, waveform.size(1)-self.max_length)
38
+ waveform = waveform[:, random_idx:random_idx+self.max_length]
39
+ else:
40
+ temp_wav = torch.zeros(1, self.max_length)
41
+ temp_wav[:, 0:waveform.size(1)] = waveform
42
+ waveform = temp_wav
43
+
44
+ assert waveform.size(1) == self.max_length, \
45
+ f"number of audio samples is {waveform.size(1)}"
46
+
47
+ return waveform
48
+
49
+ def _read_audio(self, index):
50
+ try:
51
+ audio_path = self.all_data_json[index]['wav']
52
+ audio_data, audio_rate = torchaudio.load(audio_path, channels_first=True)
53
+ text = self.all_data_json[index]['caption']
54
+
55
+ # drop short utterance
56
+ if audio_data.size(1) < self.sampling_rate * 1:
57
+ raise Exception(f'{audio_path} is too short, drop it ...')
58
+
59
+ return text, audio_data, audio_rate
60
+
61
+ except Exception as e:
62
+ print(f'error: {e} occurs, when loading {audio_path}')
63
+ random_index = random.randint(0, len(self.all_data_json)-1)
64
+ return self._read_audio(index=random_index)
65
+
66
+ def __getitem__(self, index):
67
+ # create a audio tensor
68
+ text, audio_data, audio_rate = self._read_audio(index)
69
+ audio_len = audio_data.shape[1] / audio_rate
70
+ # convert stero to single channel
71
+ if audio_data.shape[0] > 1:
72
+ # audio_data: [samples]
73
+ audio_data = (audio_data[0] + audio_data[1]) / 2
74
+ else:
75
+ audio_data = audio_data.squeeze(0)
76
+
77
+ # resample audio clip
78
+ if audio_rate != self.sampling_rate:
79
+ audio_data = torchaudio.functional.resample(audio_data, orig_freq=audio_rate, new_freq=self.sampling_rate)
80
+
81
+ audio_data = audio_data.unsqueeze(0)
82
+
83
+ audio_data = self._cut_or_randomcrop(audio_data)
84
+
85
+ data_dict = {
86
+ 'text': text,
87
+ 'waveform': audio_data,
88
+ 'modality': 'audio_text'
89
+ }
90
+
91
+ return data_dict
data/datamodules.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Optional, NoReturn
2
+ import torch
3
+ import lightning.pytorch as pl
4
+ from torch.utils.data import DataLoader
5
+ from data.audiotext_dataset import AudioTextDataset
6
+
7
+
8
+ class DataModule(pl.LightningDataModule):
9
+ def __init__(
10
+ self,
11
+ train_dataset: object,
12
+ batch_size: int,
13
+ num_workers: int
14
+ ):
15
+ r"""Data module. To get one batch of data:
16
+
17
+ code-block:: python
18
+
19
+ data_module.setup()
20
+
21
+ for batch_data_dict in data_module.train_dataloader():
22
+ print(batch_data_dict.keys())
23
+ break
24
+
25
+ Args:
26
+ train_sampler: Sampler object
27
+ train_dataset: Dataset object
28
+ num_workers: int
29
+ distributed: bool
30
+ """
31
+ super().__init__()
32
+ self._train_dataset = train_dataset
33
+ self.num_workers = num_workers
34
+ self.batch_size = batch_size
35
+ self.collate_fn = collate_fn
36
+
37
+
38
+ def prepare_data(self):
39
+ # download, split, etc...
40
+ # only called on 1 GPU/TPU in distributed
41
+ pass
42
+
43
+ def setup(self, stage: Optional[str] = None) -> NoReturn:
44
+ r"""called on every device."""
45
+
46
+ # make assignments here (val/train/test split)
47
+ # called on every process in DDP
48
+
49
+ # SegmentSampler is used for selecting segments for training.
50
+ # On multiple devices, each SegmentSampler samples a part of mini-batch
51
+ # data.
52
+ self.train_dataset = self._train_dataset
53
+
54
+
55
+ def train_dataloader(self) -> torch.utils.data.DataLoader:
56
+ r"""Get train loader."""
57
+ train_loader = DataLoader(
58
+ dataset=self.train_dataset,
59
+ batch_size=self.batch_size,
60
+ collate_fn=self.collate_fn,
61
+ num_workers=self.num_workers,
62
+ pin_memory=True,
63
+ persistent_workers=False,
64
+ shuffle=True
65
+ )
66
+
67
+ return train_loader
68
+
69
+ def val_dataloader(self):
70
+ # val_split = Dataset(...)
71
+ # return DataLoader(val_split)
72
+ pass
73
+
74
+ def test_dataloader(self):
75
+ # test_split = Dataset(...)
76
+ # return DataLoader(test_split)
77
+ pass
78
+
79
+ def teardown(self):
80
+ # clean up after fit or test
81
+ # called on every process in DDP
82
+ pass
83
+
84
+
85
+ def collate_fn(list_data_dict):
86
+ r"""Collate mini-batch data to inputs and targets for training.
87
+
88
+ Args:
89
+ list_data_dict: e.g., [
90
+ {
91
+ 'text': 'a sound of dog',
92
+ 'waveform': (1, samples),
93
+ 'modality': 'audio_text'
94
+ }
95
+ ...
96
+ ]
97
+ Returns:
98
+ data_dict: e.g.
99
+ 'audio_text': {
100
+ 'text': ['a sound of dog', ...]
101
+ 'waveform': (batch_size, 1, samples)
102
+ }
103
+ """
104
+
105
+ at_list_data_dict = [data_dict for data_dict in list_data_dict if data_dict['modality']=='audio_text']
106
+
107
+ at_data_dict = {}
108
+
109
+ if len(at_list_data_dict) > 0:
110
+ for key in at_list_data_dict[0].keys():
111
+ at_data_dict[key] = [at_data_dict[key] for at_data_dict in at_list_data_dict]
112
+ if key == 'waveform':
113
+ at_data_dict[key] = torch.stack(at_data_dict[key])
114
+ elif key == 'text':
115
+ at_data_dict[key] = [text for text in at_data_dict[key]]
116
+
117
+
118
+ data_dict = {
119
+ 'audio_text': at_data_dict
120
+ }
121
+
122
+ return data_dict
data/waveform_mixers.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import sre_compile
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import pyloudnorm as pyln
7
+
8
+
9
+ class SegmentMixer(nn.Module):
10
+ def __init__(self, max_mix_num, lower_db, higher_db):
11
+ super(SegmentMixer, self).__init__()
12
+
13
+ self.max_mix_num = max_mix_num
14
+ self.loudness_param = {
15
+ 'lower_db': lower_db,
16
+ 'higher_db': higher_db,
17
+ }
18
+
19
+ def __call__(self, waveforms):
20
+
21
+ batch_size = waveforms.shape[0]
22
+
23
+ data_dict = {
24
+ 'segment': [],
25
+ 'mixture': [],
26
+ }
27
+
28
+ for n in range(0, batch_size):
29
+
30
+ segment = waveforms[n].clone()
31
+
32
+ # create zero tensors as the background template
33
+ noise = torch.zeros_like(segment)
34
+
35
+ mix_num = random.randint(2, self.max_mix_num)
36
+ assert mix_num >= 2
37
+
38
+ for i in range(1, mix_num):
39
+ next_segment = waveforms[(n + i) % batch_size]
40
+ rescaled_next_segment = dynamic_loudnorm(audio=next_segment, reference=segment, **self.loudness_param)
41
+ noise += rescaled_next_segment
42
+
43
+ # randomly normalize background noise
44
+ noise = dynamic_loudnorm(audio=noise, reference=segment, **self.loudness_param)
45
+
46
+ # create audio mixyure
47
+ mixture = segment + noise
48
+
49
+ # declipping if need be
50
+ max_value = torch.max(torch.abs(mixture))
51
+ if max_value > 1:
52
+ segment *= 0.9 / max_value
53
+ mixture *= 0.9 / max_value
54
+
55
+ data_dict['segment'].append(segment)
56
+ data_dict['mixture'].append(mixture)
57
+
58
+ for key in data_dict.keys():
59
+ data_dict[key] = torch.stack(data_dict[key], dim=0)
60
+
61
+ # return data_dict
62
+ return data_dict['mixture'], data_dict['segment']
63
+
64
+
65
+ def rescale_to_match_energy(segment1, segment2):
66
+
67
+ ratio = get_energy_ratio(segment1, segment2)
68
+ rescaled_segment1 = segment1 / ratio
69
+ return rescaled_segment1
70
+
71
+
72
+ def get_energy(x):
73
+ return torch.mean(x ** 2)
74
+
75
+
76
+ def get_energy_ratio(segment1, segment2):
77
+
78
+ energy1 = get_energy(segment1)
79
+ energy2 = max(get_energy(segment2), 1e-10)
80
+ ratio = (energy1 / energy2) ** 0.5
81
+ ratio = torch.clamp(ratio, 0.02, 50)
82
+ return ratio
83
+
84
+
85
+ def dynamic_loudnorm(audio, reference, lower_db=-10, higher_db=10):
86
+ rescaled_audio = rescale_to_match_energy(audio, reference)
87
+
88
+ delta_loudness = random.randint(lower_db, higher_db)
89
+
90
+ gain = np.power(10.0, delta_loudness / 20.0)
91
+
92
+ return gain * rescaled_audio
93
+
94
+
95
+ def torch_to_numpy(tensor):
96
+ """Convert a PyTorch tensor to a NumPy array."""
97
+ if isinstance(tensor, torch.Tensor):
98
+ return tensor.detach().cpu().numpy()
99
+ else:
100
+ raise ValueError("Input must be a PyTorch tensor.")
101
+
102
+
103
+ def numpy_to_torch(array):
104
+ """Convert a NumPy array to a PyTorch tensor."""
105
+ if isinstance(array, np.ndarray):
106
+ return torch.from_numpy(array)
107
+ else:
108
+ raise ValueError("Input must be a NumPy array.")
109
+
110
+
111
+ # decayed
112
+ def random_loudness_norm(audio, lower_db=-35, higher_db=-15, sr=32000):
113
+ device = audio.device
114
+ audio = torch_to_numpy(audio.squeeze(0))
115
+ # randomly select a norm volume
116
+ norm_vol = random.randint(lower_db, higher_db)
117
+
118
+ # measure the loudness first
119
+ meter = pyln.Meter(sr) # create BS.1770 meter
120
+ loudness = meter.integrated_loudness(audio)
121
+ # loudness normalize audio
122
+ normalized_audio = pyln.normalize.loudness(audio, loudness, norm_vol)
123
+
124
+ normalized_audio = numpy_to_torch(normalized_audio).unsqueeze(0)
125
+
126
+ return normalized_audio.to(device)
127
+
datafiles/template.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data": [
3
+ {
4
+ "wav": "path_to_audio_file",
5
+ "caption": "textual_desciptions"
6
+ }
7
+ ]
8
+ }
environment.yml ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: AudioSep
2
+ channels:
3
+ - pytorch
4
+ - nvidia
5
+ - defaults
6
+ dependencies:
7
+ - _libgcc_mutex=0.1=main
8
+ - _openmp_mutex=5.1=1_gnu
9
+ - backcall=0.2.0=pyhd3eb1b0_0
10
+ - blas=1.0=mkl
11
+ - boltons=23.0.0=py310h06a4308_0
12
+ - brotlipy=0.7.0=py310h7f8727e_1002
13
+ - bzip2=1.0.8=h7b6447c_0
14
+ - ca-certificates=2023.01.10=h06a4308_0
15
+ - certifi=2022.12.7=py310h06a4308_0
16
+ - cffi=1.15.1=py310h5eee18b_3
17
+ - charset-normalizer=2.0.4=pyhd3eb1b0_0
18
+ - comm=0.1.2=py310h06a4308_0
19
+ - conda=23.3.1=py310h06a4308_0
20
+ - conda-content-trust=0.1.3=py310h06a4308_0
21
+ - conda-package-handling=2.0.2=py310h06a4308_0
22
+ - conda-package-streaming=0.7.0=py310h06a4308_0
23
+ - cryptography=38.0.4=py310h9ce1e76_0
24
+ - cuda=11.6.1=0
25
+ - cuda-cccl=11.6.55=hf6102b2_0
26
+ - cuda-command-line-tools=11.6.2=0
27
+ - cuda-compiler=11.6.2=0
28
+ - cuda-cudart=11.6.55=he381448_0
29
+ - cuda-cudart-dev=11.6.55=h42ad0f4_0
30
+ - cuda-cuobjdump=11.6.124=h2eeebcb_0
31
+ - cuda-cupti=11.6.124=h86345e5_0
32
+ - cuda-cuxxfilt=11.6.124=hecbf4f6_0
33
+ - cuda-driver-dev=11.6.55=0
34
+ - cuda-gdb=12.1.55=0
35
+ - cuda-libraries=11.6.1=0
36
+ - cuda-libraries-dev=11.6.1=0
37
+ - cuda-memcheck=11.8.86=0
38
+ - cuda-nsight=12.1.55=0
39
+ - cuda-nsight-compute=12.1.0=0
40
+ - cuda-nvcc=11.6.124=hbba6d2d_0
41
+ - cuda-nvdisasm=12.1.55=0
42
+ - cuda-nvml-dev=11.6.55=haa9ef22_0
43
+ - cuda-nvprof=12.1.55=0
44
+ - cuda-nvprune=11.6.124=he22ec0a_0
45
+ - cuda-nvrtc=11.6.124=h020bade_0
46
+ - cuda-nvrtc-dev=11.6.124=h249d397_0
47
+ - cuda-nvtx=11.6.124=h0630a44_0
48
+ - cuda-nvvp=12.1.55=0
49
+ - cuda-runtime=11.6.1=0
50
+ - cuda-samples=11.6.101=h8efea70_0
51
+ - cuda-sanitizer-api=12.1.55=0
52
+ - cuda-toolkit=11.6.1=0
53
+ - cuda-tools=11.6.1=0
54
+ - cuda-visual-tools=11.6.1=0
55
+ - debugpy=1.5.1=py310h295c915_0
56
+ - decorator=5.1.1=pyhd3eb1b0_0
57
+ - flit-core=3.8.0=py310h06a4308_0
58
+ - freetype=2.12.1=h4a9f257_0
59
+ - gds-tools=1.6.0.25=0
60
+ - giflib=5.2.1=h5eee18b_3
61
+ - gmp=6.2.1=h295c915_3
62
+ - gnutls=3.6.15=he1e5248_0
63
+ - idna=3.4=py310h06a4308_0
64
+ - intel-openmp=2021.4.0=h06a4308_3561
65
+ - ipykernel=6.19.2=py310h2f386ee_0
66
+ - ipython=8.12.0=py310h06a4308_0
67
+ - jpeg=9e=h5eee18b_1
68
+ - jsonpatch=1.32=pyhd3eb1b0_0
69
+ - jsonpointer=2.1=pyhd3eb1b0_0
70
+ - jupyter_client=8.1.0=py310h06a4308_0
71
+ - jupyter_core=5.3.0=py310h06a4308_0
72
+ - lame=3.100=h7b6447c_0
73
+ - lcms2=2.12=h3be6417_0
74
+ - ld_impl_linux-64=2.38=h1181459_1
75
+ - lerc=3.0=h295c915_0
76
+ - libcublas=11.9.2.110=h5e84587_0
77
+ - libcublas-dev=11.9.2.110=h5c901ab_0
78
+ - libcufft=10.7.1.112=hf425ae0_0
79
+ - libcufft-dev=10.7.1.112=ha5ce4c0_0
80
+ - libcufile=1.6.0.25=0
81
+ - libcufile-dev=1.6.0.25=0
82
+ - libcurand=10.3.2.56=0
83
+ - libcurand-dev=10.3.2.56=0
84
+ - libcusolver=11.3.4.124=h33c3c4e_0
85
+ - libcusparse=11.7.2.124=h7538f96_0
86
+ - libcusparse-dev=11.7.2.124=hbbe9722_0
87
+ - libdeflate=1.17=h5eee18b_0
88
+ - libffi=3.4.2=h6a678d5_6
89
+ - libgcc-ng=11.2.0=h1234567_1
90
+ - libgomp=11.2.0=h1234567_1
91
+ - libiconv=1.16=h7f8727e_2
92
+ - libidn2=2.3.2=h7f8727e_0
93
+ - libnpp=11.6.3.124=hd2722f0_0
94
+ - libnpp-dev=11.6.3.124=h3c42840_0
95
+ - libnvjpeg=11.6.2.124=hd473ad6_0
96
+ - libnvjpeg-dev=11.6.2.124=hb5906b9_0
97
+ - libpng=1.6.39=h5eee18b_0
98
+ - libsodium=1.0.18=h7b6447c_0
99
+ - libstdcxx-ng=11.2.0=h1234567_1
100
+ - libtasn1=4.19.0=h5eee18b_0
101
+ - libtiff=4.5.0=h6a678d5_2
102
+ - libunistring=0.9.10=h27cfd23_0
103
+ - libuuid=1.41.5=h5eee18b_0
104
+ - libwebp=1.2.4=h11a3e52_1
105
+ - libwebp-base=1.2.4=h5eee18b_1
106
+ - lz4-c=1.9.4=h6a678d5_0
107
+ - matplotlib-inline=0.1.6=py310h06a4308_0
108
+ - mkl=2021.4.0=h06a4308_640
109
+ - mkl-service=2.4.0=py310h7f8727e_0
110
+ - mkl_fft=1.3.1=py310hd6ae3a3_0
111
+ - mkl_random=1.2.2=py310h00e6091_0
112
+ - ncurses=6.4=h6a678d5_0
113
+ - nest-asyncio=1.5.6=py310h06a4308_0
114
+ - nettle=3.7.3=hbbd107a_1
115
+ - nsight-compute=2023.1.0.15=0
116
+ - numpy=1.23.5=py310hd5efca6_0
117
+ - numpy-base=1.23.5=py310h8e6c178_0
118
+ - openh264=2.1.1=h4ff587b_0
119
+ - openssl=1.1.1t=h7f8727e_0
120
+ - packaging=23.0=py310h06a4308_0
121
+ - parso=0.8.3=pyhd3eb1b0_0
122
+ - pexpect=4.8.0=pyhd3eb1b0_3
123
+ - pickleshare=0.7.5=pyhd3eb1b0_1003
124
+ - pip=22.3.1=py310h06a4308_0
125
+ - platformdirs=2.5.2=py310h06a4308_0
126
+ - pluggy=1.0.0=py310h06a4308_1
127
+ - psutil=5.9.0=py310h5eee18b_0
128
+ - ptyprocess=0.7.0=pyhd3eb1b0_2
129
+ - pure_eval=0.2.2=pyhd3eb1b0_0
130
+ - pycosat=0.6.4=py310h5eee18b_0
131
+ - pycparser=2.21=pyhd3eb1b0_0
132
+ - pyopenssl=22.0.0=pyhd3eb1b0_0
133
+ - pysocks=1.7.1=py310h06a4308_0
134
+ - python=3.10.9=h7a1cb2a_0
135
+ - python-dateutil=2.8.2=pyhd3eb1b0_0
136
+ - pytorch=1.13.1=py3.10_cuda11.6_cudnn8.3.2_0
137
+ - pytorch-cuda=11.6=h867d48c_1
138
+ - pytorch-mutex=1.0=cuda
139
+ - pyzmq=23.2.0=py310h6a678d5_0
140
+ - readline=8.2=h5eee18b_0
141
+ - requests=2.28.1=py310h06a4308_0
142
+ - ruamel.yaml=0.17.21=py310h5eee18b_0
143
+ - ruamel.yaml.clib=0.2.6=py310h5eee18b_1
144
+ - setuptools=65.6.3=py310h06a4308_0
145
+ - six=1.16.0=pyhd3eb1b0_1
146
+ - sqlite=3.40.1=h5082296_0
147
+ - stack_data=0.2.0=pyhd3eb1b0_0
148
+ - tk=8.6.12=h1ccaba5_0
149
+ - toolz=0.12.0=py310h06a4308_0
150
+ - torchaudio=0.13.1=py310_cu116
151
+ - torchvision=0.14.1=py310_cu116
152
+ - tornado=6.2=py310h5eee18b_0
153
+ - tqdm=4.64.1=py310h06a4308_0
154
+ - typing_extensions=4.4.0=py310h06a4308_0
155
+ - tzdata=2022g=h04d1e81_0
156
+ - urllib3=1.26.14=py310h06a4308_0
157
+ - wheel=0.37.1=pyhd3eb1b0_0
158
+ - xz=5.2.10=h5eee18b_1
159
+ - zeromq=4.3.4=h2531618_0
160
+ - zlib=1.2.13=h5eee18b_0
161
+ - zstandard=0.18.0=py310h5eee18b_0
162
+ - zstd=1.5.4=hc292b87_0
163
+ - pip:
164
+ - absl-py==1.4.0
165
+ - aiohttp==3.8.4
166
+ - aiosignal==1.3.1
167
+ - anyio==3.6.2
168
+ - appdirs==1.4.4
169
+ - arrow==1.2.3
170
+ - asttokens==2.2.1
171
+ - async-generator==1.10
172
+ - async-timeout==4.0.2
173
+ - attrs==22.2.0
174
+ - audioread==3.0.0
175
+ - av==10.0.0
176
+ - beartype==0.12.0
177
+ - beautifulsoup4==4.12.2
178
+ - blessed==1.20.0
179
+ - braceexpand==0.1.7
180
+ - cachetools==5.3.0
181
+ - click==8.1.3
182
+ - contourpy==1.0.7
183
+ - croniter==1.3.10
184
+ - cycler==0.11.0
185
+ - dataclasses-json==0.5.8
186
+ - dateutils==0.6.12
187
+ - decord==0.6.0
188
+ - deepdiff==6.3.0
189
+ - dtk==0.2
190
+ - exceptiongroup==1.1.1
191
+ - executing==1.2.0
192
+ - fastapi==0.88.0
193
+ - ffmpeg==1.4
194
+ - ffmpeg-python==0.2.0
195
+ - filelock==3.12.0
196
+ - fonttools==4.39.3
197
+ - frozenlist==1.3.3
198
+ - fsspec==2023.4.0
199
+ - ftfy==6.1.1
200
+ - future==0.18.3
201
+ - gammatone==1.0
202
+ - google-auth==2.17.3
203
+ - google-auth-oauthlib==1.0.0
204
+ - greenlet==2.0.2
205
+ - grpcio==1.54.0
206
+ - h11==0.14.0
207
+ - h5py==3.8.0
208
+ - hickle==5.0.2
209
+ - huggingface-hub==0.14.1
210
+ - humanize==4.6.0
211
+ - imageio==2.27.0
212
+ - inquirer==3.1.3
213
+ - ipdb==0.13.13
214
+ - itsdangerous==2.1.2
215
+ - jedi==0.18.2
216
+ - jinja2==3.1.2
217
+ - joblib==1.2.0
218
+ - kiwisolver==1.4.4
219
+ - langchain==0.0.216
220
+ - langchainplus-sdk==0.0.17
221
+ - lazy-loader==0.2
222
+ - librosa==0.10.0.post2
223
+ - lightning==2.0.0
224
+ - lightning-cloud==0.5.33
225
+ - lightning-utilities==0.8.0
226
+ - llvmlite==0.39.1
227
+ - markdown==3.4.3
228
+ - markdown-it-py==2.2.0
229
+ - markupsafe==2.1.2
230
+ - marshmallow==3.19.0
231
+ - marshmallow-enum==1.5.1
232
+ - matplotlib==3.7.1
233
+ - mdurl==0.1.2
234
+ - mergedeep==1.3.4
235
+ - mock==5.0.2
236
+ - msgpack==1.0.5
237
+ - msgpack-numpy==0.4.8
238
+ - multidict==6.0.4
239
+ - musdb==0.4.0
240
+ - mypy-extensions==1.0.0
241
+ - networkx==3.1
242
+ - nose==1.3.7
243
+ - numba==0.56.4
244
+ - numexpr==2.8.4
245
+ - oauthlib==3.2.2
246
+ - openai==0.27.8
247
+ - openapi-schema-pydantic==1.2.4
248
+ - opencv-python==4.7.0.72
249
+ - ordered-set==4.1.0
250
+ - outcome==1.2.0
251
+ - pandas==1.5.3
252
+ - panns-inference==0.1.0
253
+ - pesq==0.0.4
254
+ - pillow==9.5.0
255
+ - pooch==1.6.0
256
+ - prompt-toolkit==3.0.38
257
+ - protobuf==4.22.3
258
+ - pyaml==23.5.9
259
+ - pyasn1==0.5.0
260
+ - pyasn1-modules==0.3.0
261
+ - pydantic==1.10.7
262
+ - pygments==2.14.0
263
+ - pyjwt==2.6.0
264
+ - pyloudnorm==0.1.1
265
+ - pyparsing==3.0.9
266
+ - pystoi==0.3.3
267
+ - python-editor==1.0.4
268
+ - python-multipart==0.0.6
269
+ - pytorch-ignite==0.3.0
270
+ - pytorch-lightning==2.0.1.post0
271
+ - pytz==2023.3
272
+ - pywavelets==1.4.1
273
+ - pyyaml==6.0
274
+ - readchar==4.0.5
275
+ - regex==2023.3.23
276
+ - requests-oauthlib==1.3.1
277
+ - resampy==0.4.2
278
+ - rich==13.3.3
279
+ - rsa==4.9
280
+ - scikit-image==0.20.0
281
+ - scikit-learn==1.2.2
282
+ - scipy==1.10.1
283
+ - selenium==4.8.3
284
+ - simplejpeg==1.6.6
285
+ - sniffio==1.3.0
286
+ - sortedcontainers==2.4.0
287
+ - soundfile==0.12.1
288
+ - soupsieve==2.4
289
+ - soxr==0.3.5
290
+ - sqlalchemy==2.0.17
291
+ - stack-data==0.6.2
292
+ - starlette==0.22.0
293
+ - starsessions==1.3.0
294
+ - stempeg==0.2.3
295
+ - tenacity==8.2.2
296
+ - tensorboard==2.12.2
297
+ - tensorboard-data-server==0.7.0
298
+ - tensorboard-plugin-wit==1.8.1
299
+ - termcolor==1.1.0
300
+ - threadpoolctl==3.1.0
301
+ - tifffile==2023.3.21
302
+ - timm==0.3.2
303
+ - tokenizers==0.13.3
304
+ - tomli==2.0.1
305
+ - torchfile==0.1.0
306
+ - torchlibrosa==0.1.0
307
+ - torchmetrics==0.11.4
308
+ - traitlets==5.9.0
309
+ - transformers==4.28.1
310
+ - trio==0.22.0
311
+ - trio-websocket==0.10.2
312
+ - typeguard==3.0.2
313
+ - typing-extensions==4.5.0
314
+ - typing-inspect==0.9.0
315
+ - uvicorn==0.21.1
316
+ - visdom==0.1.8.9
317
+ - wcwidth==0.2.6
318
+ - webdataset==0.2.48
319
+ - websocket-client==1.5.1
320
+ - websockets==11.0.1
321
+ - werkzeug==2.2.3
322
+ - wget==3.2
323
+ - wsproto==1.2.0
324
+ - yarl==1.8.2
325
+ - zenodo-get==1.3.4
326
+ - zsvision==0.7.8
losses.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def l1(output, target):
5
+ return torch.mean(torch.abs(output - target))
6
+
7
+
8
+ def l1_wav(output_dict, target_dict):
9
+ return l1(output_dict['segment'], target_dict['segment'])
10
+
11
+
12
+ def get_loss_function(loss_type):
13
+ if loss_type == "l1_wav":
14
+ return l1_wav
15
+
16
+ else:
17
+ raise NotImplementedError("Error!")
models/CLAP/__init__.py ADDED
File without changes
models/CLAP/open_clip/__init__.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .factory import (
2
+ list_models,
3
+ create_model,
4
+ create_model_and_transforms,
5
+ add_model_config,
6
+ )
7
+ from .loss import ClipLoss, gather_features, LPLoss, lp_gather_features, LPMetrics
8
+ from .model import (
9
+ CLAP,
10
+ CLAPTextCfg,
11
+ CLAPVisionCfg,
12
+ CLAPAudioCfp,
13
+ convert_weights_to_fp16,
14
+ trace_model,
15
+ )
16
+ from .openai import load_openai_model, list_openai_models
17
+ from .pretrained import (
18
+ list_pretrained,
19
+ list_pretrained_tag_models,
20
+ list_pretrained_model_tags,
21
+ get_pretrained_url,
22
+ download_pretrained,
23
+ )
24
+ from .tokenizer import SimpleTokenizer, tokenize
25
+ from .transform import image_transform
models/CLAP/open_clip/bert.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BertTokenizer, BertModel
2
+
3
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
4
+ model = BertModel.from_pretrained("bert-base-uncased")
5
+ text = "Replace me by any text you'd like."
6
+
7
+
8
+ def bert_embeddings(text):
9
+ # text = "Replace me by any text you'd like."
10
+ encoded_input = tokenizer(text, return_tensors="pt")
11
+ output = model(**encoded_input)
12
+ return output
13
+
14
+
15
+ from transformers import RobertaTokenizer, RobertaModel
16
+
17
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
18
+ model = RobertaModel.from_pretrained("roberta-base")
19
+ text = "Replace me by any text you'd like."
20
+
21
+
22
+ def Roberta_embeddings(text):
23
+ # text = "Replace me by any text you'd like."
24
+ encoded_input = tokenizer(text, return_tensors="pt")
25
+ output = model(**encoded_input)
26
+ return output
27
+
28
+
29
+ from transformers import BartTokenizer, BartModel
30
+
31
+ tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
32
+ model = BartModel.from_pretrained("facebook/bart-base")
33
+ text = "Replace me by any text you'd like."
34
+
35
+
36
+ def bart_embeddings(text):
37
+ # text = "Replace me by any text you'd like."
38
+ encoded_input = tokenizer(text, return_tensors="pt")
39
+ output = model(**encoded_input)
40
+ return output
models/CLAP/open_clip/factory.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import logging
3
+ import os
4
+ import pathlib
5
+ import re
6
+ from copy import deepcopy
7
+ from pathlib import Path
8
+
9
+ import torch
10
+
11
+ from .model import CLAP, convert_weights_to_fp16
12
+ from .openai import load_openai_model
13
+ from .pretrained import get_pretrained_url, download_pretrained
14
+ from .transform import image_transform
15
+
16
+ _MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
17
+ _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
18
+
19
+
20
+ def _natural_key(string_):
21
+ return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
22
+
23
+
24
+ def _rescan_model_configs():
25
+ global _MODEL_CONFIGS
26
+
27
+ config_ext = (".json",)
28
+ config_files = []
29
+ for config_path in _MODEL_CONFIG_PATHS:
30
+ if config_path.is_file() and config_path.suffix in config_ext:
31
+ config_files.append(config_path)
32
+ elif config_path.is_dir():
33
+ for ext in config_ext:
34
+ config_files.extend(config_path.glob(f"*{ext}"))
35
+
36
+ for cf in config_files:
37
+ if os.path.basename(cf)[0] == ".":
38
+ continue # Ignore hidden files
39
+
40
+ with open(cf, "r") as f:
41
+ model_cfg = json.load(f)
42
+ if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")):
43
+ _MODEL_CONFIGS[cf.stem] = model_cfg
44
+
45
+ _MODEL_CONFIGS = {
46
+ k: v
47
+ for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
48
+ }
49
+
50
+
51
+ _rescan_model_configs() # initial populate of model config registry
52
+
53
+
54
+ def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True):
55
+ checkpoint = torch.load(checkpoint_path, map_location=map_location)
56
+ if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
57
+ state_dict = checkpoint["state_dict"]
58
+ else:
59
+ state_dict = checkpoint
60
+ if skip_params:
61
+ if next(iter(state_dict.items()))[0].startswith("module"):
62
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
63
+ # for k in state_dict:
64
+ # if k.startswith('transformer'):
65
+ # v = state_dict.pop(k)
66
+ # state_dict['text_branch.' + k[12:]] = v
67
+ return state_dict
68
+
69
+
70
+ def create_model(
71
+ amodel_name: str,
72
+ tmodel_name: str,
73
+ pretrained: str = "",
74
+ precision: str = "fp32",
75
+ device: torch.device = torch.device("cpu"),
76
+ jit: bool = False,
77
+ force_quick_gelu: bool = False,
78
+ openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"),
79
+ skip_params=True,
80
+ pretrained_audio: str = "",
81
+ pretrained_text: str = "",
82
+ enable_fusion: bool = False,
83
+ fusion_type: str = "None"
84
+ # pretrained_image: bool = False,
85
+ ):
86
+ amodel_name = amodel_name.replace(
87
+ "/", "-"
88
+ ) # for callers using old naming with / in ViT names
89
+ pretrained_orig = pretrained
90
+ pretrained = pretrained.lower()
91
+ if pretrained == "openai":
92
+ if amodel_name in _MODEL_CONFIGS:
93
+ logging.info(f"Loading {amodel_name} model config.")
94
+ model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
95
+ else:
96
+ logging.error(
97
+ f"Model config for {amodel_name} not found; available models {list_models()}."
98
+ )
99
+ raise RuntimeError(f"Model config for {amodel_name} not found.")
100
+
101
+ logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.")
102
+ # Hard Code in model name
103
+ model_cfg["text_cfg"]["model_type"] = tmodel_name
104
+ model = load_openai_model(
105
+ "ViT-B-16",
106
+ model_cfg,
107
+ device=device,
108
+ jit=jit,
109
+ cache_dir=openai_model_cache_dir,
110
+ enable_fusion=enable_fusion,
111
+ fusion_type=fusion_type,
112
+ )
113
+ # See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
114
+ if precision == "amp" or precision == "fp32":
115
+ model = model.float()
116
+ else:
117
+ if amodel_name in _MODEL_CONFIGS:
118
+ logging.info(f"Loading {amodel_name} model config.")
119
+ model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
120
+ else:
121
+ logging.error(
122
+ f"Model config for {amodel_name} not found; available models {list_models()}."
123
+ )
124
+ raise RuntimeError(f"Model config for {amodel_name} not found.")
125
+
126
+ if force_quick_gelu:
127
+ # override for use of QuickGELU on non-OpenAI transformer models
128
+ model_cfg["quick_gelu"] = True
129
+
130
+ # if pretrained_image:
131
+ # if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}):
132
+ # # pretrained weight loading for timm models set via vision_cfg
133
+ # model_cfg['vision_cfg']['timm_model_pretrained'] = True
134
+ # else:
135
+ # assert False, 'pretrained image towers currently only supported for timm models'
136
+ model_cfg["text_cfg"]["model_type"] = tmodel_name
137
+ model_cfg["enable_fusion"] = enable_fusion
138
+ model_cfg["fusion_type"] = fusion_type
139
+ model = CLAP(**model_cfg)
140
+
141
+ if pretrained:
142
+ checkpoint_path = ""
143
+ url = get_pretrained_url(amodel_name, pretrained)
144
+ if url:
145
+ checkpoint_path = download_pretrained(url, root=openai_model_cache_dir)
146
+ elif os.path.exists(pretrained_orig):
147
+ checkpoint_path = pretrained_orig
148
+ if checkpoint_path:
149
+ logging.info(
150
+ f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})."
151
+ )
152
+ ckpt = load_state_dict(checkpoint_path, skip_params=True)
153
+ model.load_state_dict(ckpt)
154
+ param_names = [n for n, p in model.named_parameters()]
155
+ # for n in param_names:
156
+ # print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
157
+ else:
158
+ logging.warning(
159
+ f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
160
+ )
161
+ raise RuntimeError(
162
+ f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
163
+ )
164
+
165
+ if pretrained_audio:
166
+ if amodel_name.startswith("PANN"):
167
+ if "Cnn14_mAP" in pretrained_audio: # official checkpoint
168
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
169
+ audio_ckpt = audio_ckpt["model"]
170
+ keys = list(audio_ckpt.keys())
171
+ for key in keys:
172
+ if (
173
+ "spectrogram_extractor" not in key
174
+ and "logmel_extractor" not in key
175
+ ):
176
+ v = audio_ckpt.pop(key)
177
+ audio_ckpt["audio_branch." + key] = v
178
+ elif os.path.basename(pretrained_audio).startswith(
179
+ "PANN"
180
+ ): # checkpoint trained via HTSAT codebase
181
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
182
+ audio_ckpt = audio_ckpt["state_dict"]
183
+ keys = list(audio_ckpt.keys())
184
+ for key in keys:
185
+ if key.startswith("sed_model"):
186
+ v = audio_ckpt.pop(key)
187
+ audio_ckpt["audio_branch." + key[10:]] = v
188
+ elif os.path.basename(pretrained_audio).startswith(
189
+ "finetuned"
190
+ ): # checkpoint trained via linear probe codebase
191
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
192
+ else:
193
+ raise ValueError("Unknown audio checkpoint")
194
+ elif amodel_name.startswith("HTSAT"):
195
+ if "HTSAT_AudioSet_Saved" in pretrained_audio: # official checkpoint
196
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
197
+ audio_ckpt = audio_ckpt["state_dict"]
198
+ keys = list(audio_ckpt.keys())
199
+ for key in keys:
200
+ if key.startswith("sed_model") and (
201
+ "spectrogram_extractor" not in key
202
+ and "logmel_extractor" not in key
203
+ ):
204
+ v = audio_ckpt.pop(key)
205
+ audio_ckpt["audio_branch." + key[10:]] = v
206
+ elif os.path.basename(pretrained_audio).startswith(
207
+ "HTSAT"
208
+ ): # checkpoint trained via HTSAT codebase
209
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
210
+ audio_ckpt = audio_ckpt["state_dict"]
211
+ keys = list(audio_ckpt.keys())
212
+ for key in keys:
213
+ if key.startswith("sed_model"):
214
+ v = audio_ckpt.pop(key)
215
+ audio_ckpt["audio_branch." + key[10:]] = v
216
+ elif os.path.basename(pretrained_audio).startswith(
217
+ "finetuned"
218
+ ): # checkpoint trained via linear probe codebase
219
+ audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
220
+ else:
221
+ raise ValueError("Unknown audio checkpoint")
222
+ else:
223
+ raise f"this audio encoder pretrained checkpoint is not support"
224
+
225
+ model.load_state_dict(audio_ckpt, strict=False)
226
+ logging.info(
227
+ f"Loading pretrained {amodel_name} weights ({pretrained_audio})."
228
+ )
229
+ param_names = [n for n, p in model.named_parameters()]
230
+ for n in param_names:
231
+ print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded")
232
+
233
+ model.to(device=device)
234
+ if precision == "fp16":
235
+ assert device.type != "cpu"
236
+ convert_weights_to_fp16(model)
237
+
238
+ if jit:
239
+ model = torch.jit.script(model)
240
+
241
+ return model, model_cfg
242
+
243
+
244
+ def create_model_and_transforms(
245
+ model_name: str,
246
+ pretrained: str = "",
247
+ precision: str = "fp32",
248
+ device: torch.device = torch.device("cpu"),
249
+ jit: bool = False,
250
+ force_quick_gelu: bool = False,
251
+ # pretrained_image: bool = False,
252
+ ):
253
+ model = create_model(
254
+ model_name,
255
+ pretrained,
256
+ precision,
257
+ device,
258
+ jit,
259
+ force_quick_gelu=force_quick_gelu,
260
+ # pretrained_image=pretrained_image
261
+ )
262
+ preprocess_train = image_transform(model.visual.image_size, is_train=True)
263
+ preprocess_val = image_transform(model.visual.image_size, is_train=False)
264
+ return model, preprocess_train, preprocess_val
265
+
266
+
267
+ def list_models():
268
+ """enumerate available model architectures based on config files"""
269
+ return list(_MODEL_CONFIGS.keys())
270
+
271
+
272
+ def add_model_config(path):
273
+ """add model config path or file and update registry"""
274
+ if not isinstance(path, Path):
275
+ path = Path(path)
276
+ _MODEL_CONFIG_PATHS.append(path)
277
+ _rescan_model_configs()
models/CLAP/open_clip/feature_fusion.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Feature Fusion for Varible-Length Data Processing
3
+ AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
4
+ According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
5
+ """
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+
11
+ class DAF(nn.Module):
12
+ """
13
+ 直接相加 DirectAddFuse
14
+ """
15
+
16
+ def __init__(self):
17
+ super(DAF, self).__init__()
18
+
19
+ def forward(self, x, residual):
20
+ return x + residual
21
+
22
+
23
+ class iAFF(nn.Module):
24
+ """
25
+ 多特征融合 iAFF
26
+ """
27
+
28
+ def __init__(self, channels=64, r=4, type="2D"):
29
+ super(iAFF, self).__init__()
30
+ inter_channels = int(channels // r)
31
+
32
+ if type == "1D":
33
+ # 本地注意力
34
+ self.local_att = nn.Sequential(
35
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
36
+ nn.BatchNorm1d(inter_channels),
37
+ nn.ReLU(inplace=True),
38
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
39
+ nn.BatchNorm1d(channels),
40
+ )
41
+
42
+ # 全局注意力
43
+ self.global_att = nn.Sequential(
44
+ nn.AdaptiveAvgPool1d(1),
45
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
46
+ nn.BatchNorm1d(inter_channels),
47
+ nn.ReLU(inplace=True),
48
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
49
+ nn.BatchNorm1d(channels),
50
+ )
51
+
52
+ # 第二次本地注意力
53
+ self.local_att2 = nn.Sequential(
54
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
55
+ nn.BatchNorm1d(inter_channels),
56
+ nn.ReLU(inplace=True),
57
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
58
+ nn.BatchNorm1d(channels),
59
+ )
60
+ # 第二次全局注意力
61
+ self.global_att2 = nn.Sequential(
62
+ nn.AdaptiveAvgPool1d(1),
63
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
64
+ nn.BatchNorm1d(inter_channels),
65
+ nn.ReLU(inplace=True),
66
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
67
+ nn.BatchNorm1d(channels),
68
+ )
69
+ elif type == "2D":
70
+ # 本地注意力
71
+ self.local_att = nn.Sequential(
72
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
73
+ nn.BatchNorm2d(inter_channels),
74
+ nn.ReLU(inplace=True),
75
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
76
+ nn.BatchNorm2d(channels),
77
+ )
78
+
79
+ # 全局注意力
80
+ self.global_att = nn.Sequential(
81
+ nn.AdaptiveAvgPool2d(1),
82
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
83
+ nn.BatchNorm2d(inter_channels),
84
+ nn.ReLU(inplace=True),
85
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
86
+ nn.BatchNorm2d(channels),
87
+ )
88
+
89
+ # 第二次本地注意力
90
+ self.local_att2 = nn.Sequential(
91
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
92
+ nn.BatchNorm2d(inter_channels),
93
+ nn.ReLU(inplace=True),
94
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
95
+ nn.BatchNorm2d(channels),
96
+ )
97
+ # 第二次全局注意力
98
+ self.global_att2 = nn.Sequential(
99
+ nn.AdaptiveAvgPool2d(1),
100
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
101
+ nn.BatchNorm2d(inter_channels),
102
+ nn.ReLU(inplace=True),
103
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
104
+ nn.BatchNorm2d(channels),
105
+ )
106
+ else:
107
+ raise f"the type is not supported"
108
+
109
+ self.sigmoid = nn.Sigmoid()
110
+
111
+ def forward(self, x, residual):
112
+ flag = False
113
+ xa = x + residual
114
+ if xa.size(0) == 1:
115
+ xa = torch.cat([xa, xa], dim=0)
116
+ flag = True
117
+ xl = self.local_att(xa)
118
+ xg = self.global_att(xa)
119
+ xlg = xl + xg
120
+ wei = self.sigmoid(xlg)
121
+ xi = x * wei + residual * (1 - wei)
122
+
123
+ xl2 = self.local_att2(xi)
124
+ xg2 = self.global_att(xi)
125
+ xlg2 = xl2 + xg2
126
+ wei2 = self.sigmoid(xlg2)
127
+ xo = x * wei2 + residual * (1 - wei2)
128
+ if flag:
129
+ xo = xo[0].unsqueeze(0)
130
+ return xo
131
+
132
+
133
+ class AFF(nn.Module):
134
+ """
135
+ 多特征融合 AFF
136
+ """
137
+
138
+ def __init__(self, channels=64, r=4, type="2D"):
139
+ super(AFF, self).__init__()
140
+ inter_channels = int(channels // r)
141
+
142
+ if type == "1D":
143
+ self.local_att = nn.Sequential(
144
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
145
+ nn.BatchNorm1d(inter_channels),
146
+ nn.ReLU(inplace=True),
147
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
148
+ nn.BatchNorm1d(channels),
149
+ )
150
+ self.global_att = nn.Sequential(
151
+ nn.AdaptiveAvgPool1d(1),
152
+ nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
153
+ nn.BatchNorm1d(inter_channels),
154
+ nn.ReLU(inplace=True),
155
+ nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
156
+ nn.BatchNorm1d(channels),
157
+ )
158
+ elif type == "2D":
159
+ self.local_att = nn.Sequential(
160
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
161
+ nn.BatchNorm2d(inter_channels),
162
+ nn.ReLU(inplace=True),
163
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
164
+ nn.BatchNorm2d(channels),
165
+ )
166
+ self.global_att = nn.Sequential(
167
+ nn.AdaptiveAvgPool2d(1),
168
+ nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
169
+ nn.BatchNorm2d(inter_channels),
170
+ nn.ReLU(inplace=True),
171
+ nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
172
+ nn.BatchNorm2d(channels),
173
+ )
174
+ else:
175
+ raise f"the type is not supported."
176
+
177
+ self.sigmoid = nn.Sigmoid()
178
+
179
+ def forward(self, x, residual):
180
+ flag = False
181
+ xa = x + residual
182
+ if xa.size(0) == 1:
183
+ xa = torch.cat([xa, xa], dim=0)
184
+ flag = True
185
+ xl = self.local_att(xa)
186
+ xg = self.global_att(xa)
187
+ xlg = xl + xg
188
+ wei = self.sigmoid(xlg)
189
+ xo = 2 * x * wei + 2 * residual * (1 - wei)
190
+ if flag:
191
+ xo = xo[0].unsqueeze(0)
192
+ return xo
models/CLAP/open_clip/htsat.py ADDED
@@ -0,0 +1,1308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ke Chen
2
+ # knutchen@ucsd.edu
3
+ # HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
4
+ # Some layers designed on the model
5
+ # below codes are based and referred from https://github.com/microsoft/Swin-Transformer
6
+ # Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from itertools import repeat
12
+ import collections.abc
13
+ import math
14
+ import warnings
15
+
16
+ from torch.nn.init import _calculate_fan_in_and_fan_out
17
+ import torch.utils.checkpoint as checkpoint
18
+
19
+ import random
20
+
21
+ from torchlibrosa.stft import Spectrogram, LogmelFilterBank
22
+ from torchlibrosa.augmentation import SpecAugmentation
23
+
24
+ from itertools import repeat
25
+ from .utils import do_mixup, interpolate
26
+
27
+ from .feature_fusion import iAFF, AFF, DAF
28
+
29
+ # from PyTorch internals
30
+ def _ntuple(n):
31
+ def parse(x):
32
+ if isinstance(x, collections.abc.Iterable):
33
+ return x
34
+ return tuple(repeat(x, n))
35
+
36
+ return parse
37
+
38
+
39
+ to_1tuple = _ntuple(1)
40
+ to_2tuple = _ntuple(2)
41
+ to_3tuple = _ntuple(3)
42
+ to_4tuple = _ntuple(4)
43
+ to_ntuple = _ntuple
44
+
45
+
46
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
47
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
48
+ This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
49
+ the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
50
+ See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
51
+ changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
52
+ 'survival rate' as the argument.
53
+ """
54
+ if drop_prob == 0.0 or not training:
55
+ return x
56
+ keep_prob = 1 - drop_prob
57
+ shape = (x.shape[0],) + (1,) * (
58
+ x.ndim - 1
59
+ ) # work with diff dim tensors, not just 2D ConvNets
60
+ random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
61
+ random_tensor.floor_() # binarize
62
+ output = x.div(keep_prob) * random_tensor
63
+ return output
64
+
65
+
66
+ class DropPath(nn.Module):
67
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
68
+
69
+ def __init__(self, drop_prob=None):
70
+ super(DropPath, self).__init__()
71
+ self.drop_prob = drop_prob
72
+
73
+ def forward(self, x):
74
+ return drop_path(x, self.drop_prob, self.training)
75
+
76
+
77
+ class PatchEmbed(nn.Module):
78
+ """2D Image to Patch Embedding"""
79
+
80
+ def __init__(
81
+ self,
82
+ img_size=224,
83
+ patch_size=16,
84
+ in_chans=3,
85
+ embed_dim=768,
86
+ norm_layer=None,
87
+ flatten=True,
88
+ patch_stride=16,
89
+ enable_fusion=False,
90
+ fusion_type="None",
91
+ ):
92
+ super().__init__()
93
+ img_size = to_2tuple(img_size)
94
+ patch_size = to_2tuple(patch_size)
95
+ patch_stride = to_2tuple(patch_stride)
96
+ self.img_size = img_size
97
+ self.patch_size = patch_size
98
+ self.patch_stride = patch_stride
99
+ self.grid_size = (
100
+ img_size[0] // patch_stride[0],
101
+ img_size[1] // patch_stride[1],
102
+ )
103
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
104
+ self.flatten = flatten
105
+ self.in_chans = in_chans
106
+ self.embed_dim = embed_dim
107
+
108
+ self.enable_fusion = enable_fusion
109
+ self.fusion_type = fusion_type
110
+
111
+ padding = (
112
+ (patch_size[0] - patch_stride[0]) // 2,
113
+ (patch_size[1] - patch_stride[1]) // 2,
114
+ )
115
+
116
+ if (self.enable_fusion) and (self.fusion_type == "channel_map"):
117
+ self.proj = nn.Conv2d(
118
+ in_chans * 4,
119
+ embed_dim,
120
+ kernel_size=patch_size,
121
+ stride=patch_stride,
122
+ padding=padding,
123
+ )
124
+ else:
125
+ self.proj = nn.Conv2d(
126
+ in_chans,
127
+ embed_dim,
128
+ kernel_size=patch_size,
129
+ stride=patch_stride,
130
+ padding=padding,
131
+ )
132
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
133
+
134
+ if (self.enable_fusion) and (
135
+ self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
136
+ ):
137
+ self.mel_conv2d = nn.Conv2d(
138
+ in_chans,
139
+ embed_dim,
140
+ kernel_size=(patch_size[0], patch_size[1] * 3),
141
+ stride=(patch_stride[0], patch_stride[1] * 3),
142
+ padding=padding,
143
+ )
144
+ if self.fusion_type == "daf_2d":
145
+ self.fusion_model = DAF()
146
+ elif self.fusion_type == "aff_2d":
147
+ self.fusion_model = AFF(channels=embed_dim, type="2D")
148
+ elif self.fusion_type == "iaff_2d":
149
+ self.fusion_model = iAFF(channels=embed_dim, type="2D")
150
+
151
+ def forward(self, x, longer_idx=None):
152
+ if (self.enable_fusion) and (
153
+ self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
154
+ ):
155
+ global_x = x[:, 0:1, :, :]
156
+
157
+ # global processing
158
+ B, C, H, W = global_x.shape
159
+ assert (
160
+ H == self.img_size[0] and W == self.img_size[1]
161
+ ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
162
+ global_x = self.proj(global_x)
163
+ TW = global_x.size(-1)
164
+ if len(longer_idx) > 0:
165
+ # local processing
166
+ local_x = x[longer_idx, 1:, :, :].contiguous()
167
+ B, C, H, W = local_x.shape
168
+ local_x = local_x.view(B * C, 1, H, W)
169
+ local_x = self.mel_conv2d(local_x)
170
+ local_x = local_x.view(
171
+ B, C, local_x.size(1), local_x.size(2), local_x.size(3)
172
+ )
173
+ local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3)
174
+ TB, TC, TH, _ = local_x.size()
175
+ if local_x.size(-1) < TW:
176
+ local_x = torch.cat(
177
+ [
178
+ local_x,
179
+ torch.zeros(
180
+ (TB, TC, TH, TW - local_x.size(-1)),
181
+ device=global_x.device,
182
+ ),
183
+ ],
184
+ dim=-1,
185
+ )
186
+ else:
187
+ local_x = local_x[:, :, :, :TW]
188
+
189
+ global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x)
190
+ x = global_x
191
+ else:
192
+ B, C, H, W = x.shape
193
+ assert (
194
+ H == self.img_size[0] and W == self.img_size[1]
195
+ ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
196
+ x = self.proj(x)
197
+
198
+ if self.flatten:
199
+ x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
200
+ x = self.norm(x)
201
+ return x
202
+
203
+
204
+ class Mlp(nn.Module):
205
+ """MLP as used in Vision Transformer, MLP-Mixer and related networks"""
206
+
207
+ def __init__(
208
+ self,
209
+ in_features,
210
+ hidden_features=None,
211
+ out_features=None,
212
+ act_layer=nn.GELU,
213
+ drop=0.0,
214
+ ):
215
+ super().__init__()
216
+ out_features = out_features or in_features
217
+ hidden_features = hidden_features or in_features
218
+ self.fc1 = nn.Linear(in_features, hidden_features)
219
+ self.act = act_layer()
220
+ self.fc2 = nn.Linear(hidden_features, out_features)
221
+ self.drop = nn.Dropout(drop)
222
+
223
+ def forward(self, x):
224
+ x = self.fc1(x)
225
+ x = self.act(x)
226
+ x = self.drop(x)
227
+ x = self.fc2(x)
228
+ x = self.drop(x)
229
+ return x
230
+
231
+
232
+ def _no_grad_trunc_normal_(tensor, mean, std, a, b):
233
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
234
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
235
+ def norm_cdf(x):
236
+ # Computes standard normal cumulative distribution function
237
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
238
+
239
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
240
+ warnings.warn(
241
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
242
+ "The distribution of values may be incorrect.",
243
+ stacklevel=2,
244
+ )
245
+
246
+ with torch.no_grad():
247
+ # Values are generated by using a truncated uniform distribution and
248
+ # then using the inverse CDF for the normal distribution.
249
+ # Get upper and lower cdf values
250
+ l = norm_cdf((a - mean) / std)
251
+ u = norm_cdf((b - mean) / std)
252
+
253
+ # Uniformly fill tensor with values from [l, u], then translate to
254
+ # [2l-1, 2u-1].
255
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
256
+
257
+ # Use inverse cdf transform for normal distribution to get truncated
258
+ # standard normal
259
+ tensor.erfinv_()
260
+
261
+ # Transform to proper mean, std
262
+ tensor.mul_(std * math.sqrt(2.0))
263
+ tensor.add_(mean)
264
+
265
+ # Clamp to ensure it's in the proper range
266
+ tensor.clamp_(min=a, max=b)
267
+ return tensor
268
+
269
+
270
+ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
271
+ # type: (Tensor, float, float, float, float) -> Tensor
272
+ r"""Fills the input Tensor with values drawn from a truncated
273
+ normal distribution. The values are effectively drawn from the
274
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
275
+ with values outside :math:`[a, b]` redrawn until they are within
276
+ the bounds. The method used for generating the random values works
277
+ best when :math:`a \leq \text{mean} \leq b`.
278
+ Args:
279
+ tensor: an n-dimensional `torch.Tensor`
280
+ mean: the mean of the normal distribution
281
+ std: the standard deviation of the normal distribution
282
+ a: the minimum cutoff value
283
+ b: the maximum cutoff value
284
+ Examples:
285
+ >>> w = torch.empty(3, 5)
286
+ >>> nn.init.trunc_normal_(w)
287
+ """
288
+ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
289
+
290
+
291
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
292
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
293
+ if mode == "fan_in":
294
+ denom = fan_in
295
+ elif mode == "fan_out":
296
+ denom = fan_out
297
+ elif mode == "fan_avg":
298
+ denom = (fan_in + fan_out) / 2
299
+
300
+ variance = scale / denom
301
+
302
+ if distribution == "truncated_normal":
303
+ # constant is stddev of standard normal truncated to (-2, 2)
304
+ trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
305
+ elif distribution == "normal":
306
+ tensor.normal_(std=math.sqrt(variance))
307
+ elif distribution == "uniform":
308
+ bound = math.sqrt(3 * variance)
309
+ tensor.uniform_(-bound, bound)
310
+ else:
311
+ raise ValueError(f"invalid distribution {distribution}")
312
+
313
+
314
+ def lecun_normal_(tensor):
315
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
316
+
317
+
318
+ def window_partition(x, window_size):
319
+ """
320
+ Args:
321
+ x: (B, H, W, C)
322
+ window_size (int): window size
323
+ Returns:
324
+ windows: (num_windows*B, window_size, window_size, C)
325
+ """
326
+ B, H, W, C = x.shape
327
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
328
+ windows = (
329
+ x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
330
+ )
331
+ return windows
332
+
333
+
334
+ def window_reverse(windows, window_size, H, W):
335
+ """
336
+ Args:
337
+ windows: (num_windows*B, window_size, window_size, C)
338
+ window_size (int): Window size
339
+ H (int): Height of image
340
+ W (int): Width of image
341
+ Returns:
342
+ x: (B, H, W, C)
343
+ """
344
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
345
+ x = windows.view(
346
+ B, H // window_size, W // window_size, window_size, window_size, -1
347
+ )
348
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
349
+ return x
350
+
351
+
352
+ class WindowAttention(nn.Module):
353
+ r"""Window based multi-head self attention (W-MSA) module with relative position bias.
354
+ It supports both of shifted and non-shifted window.
355
+ Args:
356
+ dim (int): Number of input channels.
357
+ window_size (tuple[int]): The height and width of the window.
358
+ num_heads (int): Number of attention heads.
359
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
360
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
361
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
362
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
363
+ """
364
+
365
+ def __init__(
366
+ self,
367
+ dim,
368
+ window_size,
369
+ num_heads,
370
+ qkv_bias=True,
371
+ qk_scale=None,
372
+ attn_drop=0.0,
373
+ proj_drop=0.0,
374
+ ):
375
+
376
+ super().__init__()
377
+ self.dim = dim
378
+ self.window_size = window_size # Wh, Ww
379
+ self.num_heads = num_heads
380
+ head_dim = dim // num_heads
381
+ self.scale = qk_scale or head_dim**-0.5
382
+
383
+ # define a parameter table of relative position bias
384
+ self.relative_position_bias_table = nn.Parameter(
385
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
386
+ ) # 2*Wh-1 * 2*Ww-1, nH
387
+
388
+ # get pair-wise relative position index for each token inside the window
389
+ coords_h = torch.arange(self.window_size[0])
390
+ coords_w = torch.arange(self.window_size[1])
391
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
392
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
393
+ relative_coords = (
394
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
395
+ ) # 2, Wh*Ww, Wh*Ww
396
+ relative_coords = relative_coords.permute(
397
+ 1, 2, 0
398
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
399
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
400
+ relative_coords[:, :, 1] += self.window_size[1] - 1
401
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
402
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
403
+ self.register_buffer("relative_position_index", relative_position_index)
404
+
405
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
406
+ self.attn_drop = nn.Dropout(attn_drop)
407
+ self.proj = nn.Linear(dim, dim)
408
+ self.proj_drop = nn.Dropout(proj_drop)
409
+
410
+ trunc_normal_(self.relative_position_bias_table, std=0.02)
411
+ self.softmax = nn.Softmax(dim=-1)
412
+
413
+ def forward(self, x, mask=None):
414
+ """
415
+ Args:
416
+ x: input features with shape of (num_windows*B, N, C)
417
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
418
+ """
419
+ B_, N, C = x.shape
420
+ qkv = (
421
+ self.qkv(x)
422
+ .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
423
+ .permute(2, 0, 3, 1, 4)
424
+ )
425
+ q, k, v = (
426
+ qkv[0],
427
+ qkv[1],
428
+ qkv[2],
429
+ ) # make torchscript happy (cannot use tensor as tuple)
430
+
431
+ q = q * self.scale
432
+ attn = q @ k.transpose(-2, -1)
433
+
434
+ relative_position_bias = self.relative_position_bias_table[
435
+ self.relative_position_index.view(-1)
436
+ ].view(
437
+ self.window_size[0] * self.window_size[1],
438
+ self.window_size[0] * self.window_size[1],
439
+ -1,
440
+ ) # Wh*Ww,Wh*Ww,nH
441
+ relative_position_bias = relative_position_bias.permute(
442
+ 2, 0, 1
443
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
444
+ attn = attn + relative_position_bias.unsqueeze(0)
445
+
446
+ if mask is not None:
447
+ nW = mask.shape[0]
448
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
449
+ 1
450
+ ).unsqueeze(0)
451
+ attn = attn.view(-1, self.num_heads, N, N)
452
+ attn = self.softmax(attn)
453
+ else:
454
+ attn = self.softmax(attn)
455
+
456
+ attn = self.attn_drop(attn)
457
+
458
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
459
+ x = self.proj(x)
460
+ x = self.proj_drop(x)
461
+ return x, attn
462
+
463
+ def extra_repr(self):
464
+ return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}"
465
+
466
+
467
+ # We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
468
+ class SwinTransformerBlock(nn.Module):
469
+ r"""Swin Transformer Block.
470
+ Args:
471
+ dim (int): Number of input channels.
472
+ input_resolution (tuple[int]): Input resulotion.
473
+ num_heads (int): Number of attention heads.
474
+ window_size (int): Window size.
475
+ shift_size (int): Shift size for SW-MSA.
476
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
477
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
478
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
479
+ drop (float, optional): Dropout rate. Default: 0.0
480
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
481
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
482
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
483
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
484
+ """
485
+
486
+ def __init__(
487
+ self,
488
+ dim,
489
+ input_resolution,
490
+ num_heads,
491
+ window_size=7,
492
+ shift_size=0,
493
+ mlp_ratio=4.0,
494
+ qkv_bias=True,
495
+ qk_scale=None,
496
+ drop=0.0,
497
+ attn_drop=0.0,
498
+ drop_path=0.0,
499
+ act_layer=nn.GELU,
500
+ norm_layer=nn.LayerNorm,
501
+ norm_before_mlp="ln",
502
+ ):
503
+ super().__init__()
504
+ self.dim = dim
505
+ self.input_resolution = input_resolution
506
+ self.num_heads = num_heads
507
+ self.window_size = window_size
508
+ self.shift_size = shift_size
509
+ self.mlp_ratio = mlp_ratio
510
+ self.norm_before_mlp = norm_before_mlp
511
+ if min(self.input_resolution) <= self.window_size:
512
+ # if window size is larger than input resolution, we don't partition windows
513
+ self.shift_size = 0
514
+ self.window_size = min(self.input_resolution)
515
+ assert (
516
+ 0 <= self.shift_size < self.window_size
517
+ ), "shift_size must in 0-window_size"
518
+
519
+ self.norm1 = norm_layer(dim)
520
+ self.attn = WindowAttention(
521
+ dim,
522
+ window_size=to_2tuple(self.window_size),
523
+ num_heads=num_heads,
524
+ qkv_bias=qkv_bias,
525
+ qk_scale=qk_scale,
526
+ attn_drop=attn_drop,
527
+ proj_drop=drop,
528
+ )
529
+
530
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
531
+ if self.norm_before_mlp == "ln":
532
+ self.norm2 = nn.LayerNorm(dim)
533
+ elif self.norm_before_mlp == "bn":
534
+ self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(
535
+ 1, 2
536
+ )
537
+ else:
538
+ raise NotImplementedError
539
+ mlp_hidden_dim = int(dim * mlp_ratio)
540
+ self.mlp = Mlp(
541
+ in_features=dim,
542
+ hidden_features=mlp_hidden_dim,
543
+ act_layer=act_layer,
544
+ drop=drop,
545
+ )
546
+
547
+ if self.shift_size > 0:
548
+ # calculate attention mask for SW-MSA
549
+ H, W = self.input_resolution
550
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
551
+ h_slices = (
552
+ slice(0, -self.window_size),
553
+ slice(-self.window_size, -self.shift_size),
554
+ slice(-self.shift_size, None),
555
+ )
556
+ w_slices = (
557
+ slice(0, -self.window_size),
558
+ slice(-self.window_size, -self.shift_size),
559
+ slice(-self.shift_size, None),
560
+ )
561
+ cnt = 0
562
+ for h in h_slices:
563
+ for w in w_slices:
564
+ img_mask[:, h, w, :] = cnt
565
+ cnt += 1
566
+
567
+ mask_windows = window_partition(
568
+ img_mask, self.window_size
569
+ ) # nW, window_size, window_size, 1
570
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
571
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
572
+ attn_mask = attn_mask.masked_fill(
573
+ attn_mask != 0, float(-100.0)
574
+ ).masked_fill(attn_mask == 0, float(0.0))
575
+ else:
576
+ attn_mask = None
577
+
578
+ self.register_buffer("attn_mask", attn_mask)
579
+
580
+ def forward(self, x):
581
+ # pdb.set_trace()
582
+ H, W = self.input_resolution
583
+ # print("H: ", H)
584
+ # print("W: ", W)
585
+ # pdb.set_trace()
586
+ B, L, C = x.shape
587
+ # assert L == H * W, "input feature has wrong size"
588
+
589
+ shortcut = x
590
+ x = self.norm1(x)
591
+ x = x.view(B, H, W, C)
592
+
593
+ # cyclic shift
594
+ if self.shift_size > 0:
595
+ shifted_x = torch.roll(
596
+ x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
597
+ )
598
+ else:
599
+ shifted_x = x
600
+
601
+ # partition windows
602
+ x_windows = window_partition(
603
+ shifted_x, self.window_size
604
+ ) # nW*B, window_size, window_size, C
605
+ x_windows = x_windows.view(
606
+ -1, self.window_size * self.window_size, C
607
+ ) # nW*B, window_size*window_size, C
608
+
609
+ # W-MSA/SW-MSA
610
+ attn_windows, attn = self.attn(
611
+ x_windows, mask=self.attn_mask
612
+ ) # nW*B, window_size*window_size, C
613
+
614
+ # merge windows
615
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
616
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
617
+
618
+ # reverse cyclic shift
619
+ if self.shift_size > 0:
620
+ x = torch.roll(
621
+ shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
622
+ )
623
+ else:
624
+ x = shifted_x
625
+ x = x.view(B, H * W, C)
626
+
627
+ # FFN
628
+ x = shortcut + self.drop_path(x)
629
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
630
+
631
+ return x, attn
632
+
633
+ def extra_repr(self):
634
+ return (
635
+ f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
636
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
637
+ )
638
+
639
+
640
+ class PatchMerging(nn.Module):
641
+ r"""Patch Merging Layer.
642
+ Args:
643
+ input_resolution (tuple[int]): Resolution of input feature.
644
+ dim (int): Number of input channels.
645
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
646
+ """
647
+
648
+ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
649
+ super().__init__()
650
+ self.input_resolution = input_resolution
651
+ self.dim = dim
652
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
653
+ self.norm = norm_layer(4 * dim)
654
+
655
+ def forward(self, x):
656
+ """
657
+ x: B, H*W, C
658
+ """
659
+ H, W = self.input_resolution
660
+ B, L, C = x.shape
661
+ assert L == H * W, "input feature has wrong size"
662
+ assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
663
+
664
+ x = x.view(B, H, W, C)
665
+
666
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
667
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
668
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
669
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
670
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
671
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
672
+
673
+ x = self.norm(x)
674
+ x = self.reduction(x)
675
+
676
+ return x
677
+
678
+ def extra_repr(self):
679
+ return f"input_resolution={self.input_resolution}, dim={self.dim}"
680
+
681
+
682
+ class BasicLayer(nn.Module):
683
+ """A basic Swin Transformer layer for one stage.
684
+ Args:
685
+ dim (int): Number of input channels.
686
+ input_resolution (tuple[int]): Input resolution.
687
+ depth (int): Number of blocks.
688
+ num_heads (int): Number of attention heads.
689
+ window_size (int): Local window size.
690
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
691
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
692
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
693
+ drop (float, optional): Dropout rate. Default: 0.0
694
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
695
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
696
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
697
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
698
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
699
+ """
700
+
701
+ def __init__(
702
+ self,
703
+ dim,
704
+ input_resolution,
705
+ depth,
706
+ num_heads,
707
+ window_size,
708
+ mlp_ratio=4.0,
709
+ qkv_bias=True,
710
+ qk_scale=None,
711
+ drop=0.0,
712
+ attn_drop=0.0,
713
+ drop_path=0.0,
714
+ norm_layer=nn.LayerNorm,
715
+ downsample=None,
716
+ use_checkpoint=False,
717
+ norm_before_mlp="ln",
718
+ ):
719
+
720
+ super().__init__()
721
+ self.dim = dim
722
+ self.input_resolution = input_resolution
723
+ self.depth = depth
724
+ self.use_checkpoint = use_checkpoint
725
+
726
+ # build blocks
727
+ self.blocks = nn.ModuleList(
728
+ [
729
+ SwinTransformerBlock(
730
+ dim=dim,
731
+ input_resolution=input_resolution,
732
+ num_heads=num_heads,
733
+ window_size=window_size,
734
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
735
+ mlp_ratio=mlp_ratio,
736
+ qkv_bias=qkv_bias,
737
+ qk_scale=qk_scale,
738
+ drop=drop,
739
+ attn_drop=attn_drop,
740
+ drop_path=drop_path[i]
741
+ if isinstance(drop_path, list)
742
+ else drop_path,
743
+ norm_layer=norm_layer,
744
+ norm_before_mlp=norm_before_mlp,
745
+ )
746
+ for i in range(depth)
747
+ ]
748
+ )
749
+
750
+ # patch merging layer
751
+ if downsample is not None:
752
+ self.downsample = downsample(
753
+ input_resolution, dim=dim, norm_layer=norm_layer
754
+ )
755
+ else:
756
+ self.downsample = None
757
+
758
+ def forward(self, x):
759
+ attns = []
760
+ for blk in self.blocks:
761
+ if self.use_checkpoint:
762
+ x = checkpoint.checkpoint(blk, x)
763
+ else:
764
+ x, attn = blk(x)
765
+ if not self.training:
766
+ attns.append(attn.unsqueeze(0))
767
+ if self.downsample is not None:
768
+ x = self.downsample(x)
769
+ if not self.training:
770
+ attn = torch.cat(attns, dim=0)
771
+ attn = torch.mean(attn, dim=0)
772
+ return x, attn
773
+
774
+ def extra_repr(self):
775
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
776
+
777
+
778
+ # The Core of HTSAT
779
+ class HTSAT_Swin_Transformer(nn.Module):
780
+ r"""HTSAT based on the Swin Transformer
781
+ Args:
782
+ spec_size (int | tuple(int)): Input Spectrogram size. Default 256
783
+ patch_size (int | tuple(int)): Patch size. Default: 4
784
+ path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
785
+ in_chans (int): Number of input image channels. Default: 1 (mono)
786
+ num_classes (int): Number of classes for classification head. Default: 527
787
+ embed_dim (int): Patch embedding dimension. Default: 96
788
+ depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
789
+ num_heads (tuple(int)): Number of attention heads in different layers.
790
+ window_size (int): Window size. Default: 8
791
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
792
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
793
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
794
+ drop_rate (float): Dropout rate. Default: 0
795
+ attn_drop_rate (float): Attention dropout rate. Default: 0
796
+ drop_path_rate (float): Stochastic depth rate. Default: 0.1
797
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
798
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
799
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True
800
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
801
+ config (module): The configuration Module from config.py
802
+ """
803
+
804
+ def __init__(
805
+ self,
806
+ spec_size=256,
807
+ patch_size=4,
808
+ patch_stride=(4, 4),
809
+ in_chans=1,
810
+ num_classes=527,
811
+ embed_dim=96,
812
+ depths=[2, 2, 6, 2],
813
+ num_heads=[4, 8, 16, 32],
814
+ window_size=8,
815
+ mlp_ratio=4.0,
816
+ qkv_bias=True,
817
+ qk_scale=None,
818
+ drop_rate=0.0,
819
+ attn_drop_rate=0.0,
820
+ drop_path_rate=0.1,
821
+ norm_layer=nn.LayerNorm,
822
+ ape=False,
823
+ patch_norm=True,
824
+ use_checkpoint=False,
825
+ norm_before_mlp="ln",
826
+ config=None,
827
+ enable_fusion=False,
828
+ fusion_type="None",
829
+ **kwargs,
830
+ ):
831
+ super(HTSAT_Swin_Transformer, self).__init__()
832
+
833
+ self.config = config
834
+ self.spec_size = spec_size
835
+ self.patch_stride = patch_stride
836
+ self.patch_size = patch_size
837
+ self.window_size = window_size
838
+ self.embed_dim = embed_dim
839
+ self.depths = depths
840
+ self.ape = ape
841
+ self.in_chans = in_chans
842
+ self.num_classes = num_classes
843
+ self.num_heads = num_heads
844
+ self.num_layers = len(self.depths)
845
+ self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
846
+
847
+ self.drop_rate = drop_rate
848
+ self.attn_drop_rate = attn_drop_rate
849
+ self.drop_path_rate = drop_path_rate
850
+
851
+ self.qkv_bias = qkv_bias
852
+ self.qk_scale = None
853
+
854
+ self.patch_norm = patch_norm
855
+ self.norm_layer = norm_layer if self.patch_norm else None
856
+ self.norm_before_mlp = norm_before_mlp
857
+ self.mlp_ratio = mlp_ratio
858
+
859
+ self.use_checkpoint = use_checkpoint
860
+
861
+ self.enable_fusion = enable_fusion
862
+ self.fusion_type = fusion_type
863
+
864
+ # process mel-spec ; used only once
865
+ self.freq_ratio = self.spec_size // self.config.mel_bins
866
+ window = "hann"
867
+ center = True
868
+ pad_mode = "reflect"
869
+ ref = 1.0
870
+ amin = 1e-10
871
+ top_db = None
872
+ self.interpolate_ratio = 32 # Downsampled ratio
873
+ # Spectrogram extractor
874
+ self.spectrogram_extractor = Spectrogram(
875
+ n_fft=config.window_size,
876
+ hop_length=config.hop_size,
877
+ win_length=config.window_size,
878
+ window=window,
879
+ center=center,
880
+ pad_mode=pad_mode,
881
+ freeze_parameters=True,
882
+ )
883
+ # Logmel feature extractor
884
+ self.logmel_extractor = LogmelFilterBank(
885
+ sr=config.sample_rate,
886
+ n_fft=config.window_size,
887
+ n_mels=config.mel_bins,
888
+ fmin=config.fmin,
889
+ fmax=config.fmax,
890
+ ref=ref,
891
+ amin=amin,
892
+ top_db=top_db,
893
+ freeze_parameters=True,
894
+ )
895
+ # Spec augmenter
896
+ self.spec_augmenter = SpecAugmentation(
897
+ time_drop_width=64,
898
+ time_stripes_num=2,
899
+ freq_drop_width=8,
900
+ freq_stripes_num=2,
901
+ ) # 2 2
902
+ self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
903
+
904
+ # split spctrogram into non-overlapping patches
905
+ self.patch_embed = PatchEmbed(
906
+ img_size=self.spec_size,
907
+ patch_size=self.patch_size,
908
+ in_chans=self.in_chans,
909
+ embed_dim=self.embed_dim,
910
+ norm_layer=self.norm_layer,
911
+ patch_stride=patch_stride,
912
+ enable_fusion=self.enable_fusion,
913
+ fusion_type=self.fusion_type,
914
+ )
915
+
916
+ num_patches = self.patch_embed.num_patches
917
+ patches_resolution = self.patch_embed.grid_size
918
+ self.patches_resolution = patches_resolution
919
+
920
+ # absolute position embedding
921
+ if self.ape:
922
+ self.absolute_pos_embed = nn.Parameter(
923
+ torch.zeros(1, num_patches, self.embed_dim)
924
+ )
925
+ trunc_normal_(self.absolute_pos_embed, std=0.02)
926
+
927
+ self.pos_drop = nn.Dropout(p=self.drop_rate)
928
+
929
+ # stochastic depth
930
+ dpr = [
931
+ x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
932
+ ] # stochastic depth decay rule
933
+
934
+ # build layers
935
+ self.layers = nn.ModuleList()
936
+ for i_layer in range(self.num_layers):
937
+ layer = BasicLayer(
938
+ dim=int(self.embed_dim * 2**i_layer),
939
+ input_resolution=(
940
+ patches_resolution[0] // (2**i_layer),
941
+ patches_resolution[1] // (2**i_layer),
942
+ ),
943
+ depth=self.depths[i_layer],
944
+ num_heads=self.num_heads[i_layer],
945
+ window_size=self.window_size,
946
+ mlp_ratio=self.mlp_ratio,
947
+ qkv_bias=self.qkv_bias,
948
+ qk_scale=self.qk_scale,
949
+ drop=self.drop_rate,
950
+ attn_drop=self.attn_drop_rate,
951
+ drop_path=dpr[
952
+ sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1])
953
+ ],
954
+ norm_layer=self.norm_layer,
955
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
956
+ use_checkpoint=use_checkpoint,
957
+ norm_before_mlp=self.norm_before_mlp,
958
+ )
959
+ self.layers.append(layer)
960
+
961
+ self.norm = self.norm_layer(self.num_features)
962
+ self.avgpool = nn.AdaptiveAvgPool1d(1)
963
+ self.maxpool = nn.AdaptiveMaxPool1d(1)
964
+
965
+ SF = (
966
+ self.spec_size
967
+ // (2 ** (len(self.depths) - 1))
968
+ // self.patch_stride[0]
969
+ // self.freq_ratio
970
+ )
971
+ self.tscam_conv = nn.Conv2d(
972
+ in_channels=self.num_features,
973
+ out_channels=self.num_classes,
974
+ kernel_size=(SF, 3),
975
+ padding=(0, 1),
976
+ )
977
+ self.head = nn.Linear(num_classes, num_classes)
978
+
979
+ if (self.enable_fusion) and (
980
+ self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]
981
+ ):
982
+ self.mel_conv1d = nn.Sequential(
983
+ nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
984
+ nn.BatchNorm1d(64),
985
+ )
986
+ if self.fusion_type == "daf_1d":
987
+ self.fusion_model = DAF()
988
+ elif self.fusion_type == "aff_1d":
989
+ self.fusion_model = AFF(channels=64, type="1D")
990
+ elif self.fusion_type == "iaff_1d":
991
+ self.fusion_model = iAFF(channels=64, type="1D")
992
+
993
+ self.apply(self._init_weights)
994
+
995
+ def _init_weights(self, m):
996
+ if isinstance(m, nn.Linear):
997
+ trunc_normal_(m.weight, std=0.02)
998
+ if isinstance(m, nn.Linear) and m.bias is not None:
999
+ nn.init.constant_(m.bias, 0)
1000
+ elif isinstance(m, nn.LayerNorm):
1001
+ nn.init.constant_(m.bias, 0)
1002
+ nn.init.constant_(m.weight, 1.0)
1003
+
1004
+ @torch.jit.ignore
1005
+ def no_weight_decay(self):
1006
+ return {"absolute_pos_embed"}
1007
+
1008
+ @torch.jit.ignore
1009
+ def no_weight_decay_keywords(self):
1010
+ return {"relative_position_bias_table"}
1011
+
1012
+ def forward_features(self, x, longer_idx=None):
1013
+ # A deprecated optimization for using a hierarchical output from different blocks
1014
+
1015
+ frames_num = x.shape[2]
1016
+ x = self.patch_embed(x, longer_idx=longer_idx)
1017
+ if self.ape:
1018
+ x = x + self.absolute_pos_embed
1019
+ x = self.pos_drop(x)
1020
+ for i, layer in enumerate(self.layers):
1021
+ x, attn = layer(x)
1022
+ # for x
1023
+ x = self.norm(x)
1024
+ B, N, C = x.shape
1025
+ SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
1026
+ ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
1027
+ x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST)
1028
+ B, C, F, T = x.shape
1029
+ # group 2D CNN
1030
+ c_freq_bin = F // self.freq_ratio
1031
+ x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
1032
+ x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1)
1033
+ # get latent_output
1034
+ fine_grained_latent_output = torch.mean(x, dim=2)
1035
+ fine_grained_latent_output = interpolate(
1036
+ fine_grained_latent_output.permute(0, 2, 1).contiguous(),
1037
+ 8 * self.patch_stride[1],
1038
+ )
1039
+
1040
+ latent_output = self.avgpool(torch.flatten(x, 2))
1041
+ latent_output = torch.flatten(latent_output, 1)
1042
+
1043
+ # display the attention map, if needed
1044
+
1045
+ x = self.tscam_conv(x)
1046
+ x = torch.flatten(x, 2) # B, C, T
1047
+
1048
+ fpx = interpolate(
1049
+ torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1]
1050
+ )
1051
+
1052
+ x = self.avgpool(x)
1053
+ x = torch.flatten(x, 1)
1054
+
1055
+ output_dict = {
1056
+ "framewise_output": fpx, # already sigmoided
1057
+ "clipwise_output": torch.sigmoid(x),
1058
+ "fine_grained_embedding": fine_grained_latent_output,
1059
+ "embedding": latent_output,
1060
+ }
1061
+
1062
+ return output_dict
1063
+
1064
+ def crop_wav(self, x, crop_size, spe_pos=None):
1065
+ time_steps = x.shape[2]
1066
+ tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
1067
+ for i in range(len(x)):
1068
+ if spe_pos is None:
1069
+ crop_pos = random.randint(0, time_steps - crop_size - 1)
1070
+ else:
1071
+ crop_pos = spe_pos
1072
+ tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :]
1073
+ return tx
1074
+
1075
+ # Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
1076
+ def reshape_wav2img(self, x):
1077
+ B, C, T, F = x.shape
1078
+ target_T = int(self.spec_size * self.freq_ratio)
1079
+ target_F = self.spec_size // self.freq_ratio
1080
+ assert (
1081
+ T <= target_T and F <= target_F
1082
+ ), "the wav size should less than or equal to the swin input size"
1083
+ # to avoid bicubic zero error
1084
+ if T < target_T:
1085
+ x = nn.functional.interpolate(
1086
+ x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
1087
+ )
1088
+ if F < target_F:
1089
+ x = nn.functional.interpolate(
1090
+ x, (x.shape[2], target_F), mode="bicubic", align_corners=True
1091
+ )
1092
+ x = x.permute(0, 1, 3, 2).contiguous()
1093
+ x = x.reshape(
1094
+ x.shape[0],
1095
+ x.shape[1],
1096
+ x.shape[2],
1097
+ self.freq_ratio,
1098
+ x.shape[3] // self.freq_ratio,
1099
+ )
1100
+ # print(x.shape)
1101
+ x = x.permute(0, 1, 3, 2, 4).contiguous()
1102
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
1103
+ return x
1104
+
1105
+ # Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
1106
+ def repeat_wat2img(self, x, cur_pos):
1107
+ B, C, T, F = x.shape
1108
+ target_T = int(self.spec_size * self.freq_ratio)
1109
+ target_F = self.spec_size // self.freq_ratio
1110
+ assert (
1111
+ T <= target_T and F <= target_F
1112
+ ), "the wav size should less than or equal to the swin input size"
1113
+ # to avoid bicubic zero error
1114
+ if T < target_T:
1115
+ x = nn.functional.interpolate(
1116
+ x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
1117
+ )
1118
+ if F < target_F:
1119
+ x = nn.functional.interpolate(
1120
+ x, (x.shape[2], target_F), mode="bicubic", align_corners=True
1121
+ )
1122
+ x = x.permute(0, 1, 3, 2).contiguous() # B C F T
1123
+ x = x[:, :, :, cur_pos : cur_pos + self.spec_size]
1124
+ x = x.repeat(repeats=(1, 1, 4, 1))
1125
+ return x
1126
+
1127
+ def forward(
1128
+ self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None
1129
+ ): # out_feat_keys: List[str] = None):
1130
+
1131
+ if self.enable_fusion and x["longer"].sum() == 0:
1132
+ # if no audio is longer than 10s, then randomly select one audio to be longer
1133
+ x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True
1134
+
1135
+ if not self.enable_fusion:
1136
+ x = x["waveform"].to(device=device, non_blocking=True)
1137
+ x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
1138
+ x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
1139
+ x = x.transpose(1, 3)
1140
+ x = self.bn0(x)
1141
+ x = x.transpose(1, 3)
1142
+ if self.training:
1143
+ x = self.spec_augmenter(x)
1144
+
1145
+ if self.training and mixup_lambda is not None:
1146
+ x = do_mixup(x, mixup_lambda)
1147
+
1148
+ x = self.reshape_wav2img(x)
1149
+ output_dict = self.forward_features(x)
1150
+ else:
1151
+ longer_list = x["longer"].to(device=device, non_blocking=True)
1152
+ x = x["mel_fusion"].to(device=device, non_blocking=True)
1153
+ x = x.transpose(1, 3)
1154
+ x = self.bn0(x)
1155
+ x = x.transpose(1, 3)
1156
+ longer_list_idx = torch.where(longer_list)[0]
1157
+ if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]:
1158
+ new_x = x[:, 0:1, :, :].clone().contiguous()
1159
+ if len(longer_list_idx) > 0:
1160
+ # local processing
1161
+ fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous()
1162
+ FB, FC, FT, FF = fusion_x_local.size()
1163
+ fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
1164
+ fusion_x_local = torch.permute(
1165
+ fusion_x_local, (0, 2, 1)
1166
+ ).contiguous()
1167
+ fusion_x_local = self.mel_conv1d(fusion_x_local)
1168
+ fusion_x_local = fusion_x_local.view(
1169
+ FB, FC, FF, fusion_x_local.size(-1)
1170
+ )
1171
+ fusion_x_local = (
1172
+ torch.permute(fusion_x_local, (0, 2, 1, 3))
1173
+ .contiguous()
1174
+ .flatten(2)
1175
+ )
1176
+ if fusion_x_local.size(-1) < FT:
1177
+ fusion_x_local = torch.cat(
1178
+ [
1179
+ fusion_x_local,
1180
+ torch.zeros(
1181
+ (FB, FF, FT - fusion_x_local.size(-1)),
1182
+ device=device,
1183
+ ),
1184
+ ],
1185
+ dim=-1,
1186
+ )
1187
+ else:
1188
+ fusion_x_local = fusion_x_local[:, :, :FT]
1189
+ # 1D fusion
1190
+ new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous()
1191
+ new_x[longer_list_idx] = self.fusion_model(
1192
+ new_x[longer_list_idx], fusion_x_local
1193
+ )
1194
+ x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :]
1195
+ else:
1196
+ x = new_x
1197
+
1198
+ elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]:
1199
+ x = x # no change
1200
+
1201
+ if self.training:
1202
+ x = self.spec_augmenter(x)
1203
+ if self.training and mixup_lambda is not None:
1204
+ x = do_mixup(x, mixup_lambda)
1205
+
1206
+ x = self.reshape_wav2img(x)
1207
+ output_dict = self.forward_features(x, longer_idx=longer_list_idx)
1208
+
1209
+ # if infer_mode:
1210
+ # # in infer mode. we need to handle different length audio input
1211
+ # frame_num = x.shape[2]
1212
+ # target_T = int(self.spec_size * self.freq_ratio)
1213
+ # repeat_ratio = math.floor(target_T / frame_num)
1214
+ # x = x.repeat(repeats=(1,1,repeat_ratio,1))
1215
+ # x = self.reshape_wav2img(x)
1216
+ # output_dict = self.forward_features(x)
1217
+ # else:
1218
+ # if x.shape[2] > self.freq_ratio * self.spec_size:
1219
+ # if self.training:
1220
+ # x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
1221
+ # x = self.reshape_wav2img(x)
1222
+ # output_dict = self.forward_features(x)
1223
+ # else:
1224
+ # # Change: Hard code here
1225
+ # overlap_size = (x.shape[2] - 1) // 4
1226
+ # output_dicts = []
1227
+ # crop_size = (x.shape[2] - 1) // 2
1228
+ # for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
1229
+ # tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
1230
+ # tx = self.reshape_wav2img(tx)
1231
+ # output_dicts.append(self.forward_features(tx))
1232
+ # clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
1233
+ # framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
1234
+ # for d in output_dicts:
1235
+ # clipwise_output += d["clipwise_output"]
1236
+ # framewise_output += d["framewise_output"]
1237
+ # clipwise_output = clipwise_output / len(output_dicts)
1238
+ # framewise_output = framewise_output / len(output_dicts)
1239
+ # output_dict = {
1240
+ # 'framewise_output': framewise_output,
1241
+ # 'clipwise_output': clipwise_output
1242
+ # }
1243
+ # else: # this part is typically used, and most easy one
1244
+ # x = self.reshape_wav2img(x)
1245
+ # output_dict = self.forward_features(x)
1246
+ # x = self.head(x)
1247
+
1248
+ # We process the data in the dataloader part, in that here we only consider the input_T < fixed_T
1249
+
1250
+ return output_dict
1251
+
1252
+
1253
+ def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"):
1254
+ try:
1255
+
1256
+ assert audio_cfg.model_name in [
1257
+ "tiny",
1258
+ "base",
1259
+ "large",
1260
+ ], "model name for HTS-AT is wrong!"
1261
+ if audio_cfg.model_name == "tiny":
1262
+ model = HTSAT_Swin_Transformer(
1263
+ spec_size=256,
1264
+ patch_size=4,
1265
+ patch_stride=(4, 4),
1266
+ num_classes=audio_cfg.class_num,
1267
+ embed_dim=96,
1268
+ depths=[2, 2, 6, 2],
1269
+ num_heads=[4, 8, 16, 32],
1270
+ window_size=8,
1271
+ config=audio_cfg,
1272
+ enable_fusion=enable_fusion,
1273
+ fusion_type=fusion_type,
1274
+ )
1275
+ elif audio_cfg.model_name == "base":
1276
+ model = HTSAT_Swin_Transformer(
1277
+ spec_size=256,
1278
+ patch_size=4,
1279
+ patch_stride=(4, 4),
1280
+ num_classes=audio_cfg.class_num,
1281
+ embed_dim=128,
1282
+ depths=[2, 2, 12, 2],
1283
+ num_heads=[4, 8, 16, 32],
1284
+ window_size=8,
1285
+ config=audio_cfg,
1286
+ enable_fusion=enable_fusion,
1287
+ fusion_type=fusion_type,
1288
+ )
1289
+ elif audio_cfg.model_name == "large":
1290
+ model = HTSAT_Swin_Transformer(
1291
+ spec_size=256,
1292
+ patch_size=4,
1293
+ patch_stride=(4, 4),
1294
+ num_classes=audio_cfg.class_num,
1295
+ embed_dim=256,
1296
+ depths=[2, 2, 12, 2],
1297
+ num_heads=[4, 8, 16, 32],
1298
+ window_size=8,
1299
+ config=audio_cfg,
1300
+ enable_fusion=enable_fusion,
1301
+ fusion_type=fusion_type,
1302
+ )
1303
+
1304
+ return model
1305
+ except:
1306
+ raise RuntimeError(
1307
+ f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough."
1308
+ )
models/CLAP/open_clip/linear_probe.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch.nn.functional as F
3
+ from torch import nn
4
+ from .model import MLPLayers
5
+
6
+
7
+ class LinearProbe(nn.Module):
8
+ def __init__(self, model, mlp, freeze, in_ch, out_ch, act=None):
9
+ """
10
+ Args:
11
+ model: nn.Module
12
+ mlp: bool, if True, then use the MLP layer as the linear probe module
13
+ freeze: bool, if Ture, then freeze all the CLAP model's layers when training the linear probe
14
+ in_ch: int, the output channel from CLAP model
15
+ out_ch: int, the output channel from linear probe (class_num)
16
+ act: torch.nn.functional, the activation function before the loss function
17
+ """
18
+ super().__init__()
19
+ in_ch = 512
20
+ self.clap_model = model
21
+ self.clap_model.text_branch = None # to save memory
22
+ self.freeze = freeze
23
+ if mlp:
24
+ self.lp_layer = MLPLayers(units=[in_ch, in_ch * 2, out_ch])
25
+ else:
26
+ self.lp_layer = nn.Linear(in_ch, out_ch)
27
+
28
+ if self.freeze:
29
+ for param in self.clap_model.parameters():
30
+ param.requires_grad = False
31
+
32
+ if act == "None":
33
+ self.act = None
34
+ elif act == "relu":
35
+ self.act = nn.ReLU()
36
+ elif act == "elu":
37
+ self.act = nn.ELU()
38
+ elif act == "prelu":
39
+ self.act = nn.PReLU(num_parameters=in_ch)
40
+ elif act == "softmax":
41
+ self.act = nn.Softmax(dim=-1)
42
+ elif act == "sigmoid":
43
+ self.act = nn.Sigmoid()
44
+
45
+ def forward(self, x, mix_lambda=None, device=None):
46
+ """
47
+ Args:
48
+ x: waveform, torch.tensor [batch, t_samples] / batch of mel_spec and longer list
49
+ mix_lambda: torch.tensor [batch], the mixup lambda
50
+ Returns:
51
+ class_prob: torch.tensor [batch, class_num]
52
+
53
+ """
54
+ # batchnorm cancel grandient
55
+ if self.freeze:
56
+ self.clap_model.eval()
57
+
58
+ x = self.clap_model.audio_projection(
59
+ self.clap_model.audio_branch(x, mixup_lambda=mix_lambda, device=device)[
60
+ "embedding"
61
+ ]
62
+ )
63
+ out = self.lp_layer(x)
64
+ if self.act is not None:
65
+ out = self.act(out)
66
+ return out
models/CLAP/open_clip/loss.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from multiprocessing.sharedctypes import Value
2
+ import torch
3
+ import torch.distributed.nn
4
+ from torch import distributed as dist, nn as nn
5
+ from torch.nn import functional as F
6
+ import numpy as np
7
+ from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
8
+
9
+ try:
10
+ import horovod.torch as hvd
11
+ except ImportError:
12
+ hvd = None
13
+
14
+
15
+ def gather_features(
16
+ audio_features,
17
+ text_features,
18
+ audio_features_mlp=None,
19
+ text_features_mlp=None,
20
+ local_loss=False,
21
+ gather_with_grad=False,
22
+ rank=0,
23
+ world_size=1,
24
+ use_horovod=False,
25
+ mlp_loss=False,
26
+ ):
27
+ if use_horovod:
28
+ assert hvd is not None, "Please install horovod"
29
+ if gather_with_grad:
30
+ all_audio_features = hvd.allgather(audio_features)
31
+ all_text_features = hvd.allgather(text_features)
32
+ if mlp_loss:
33
+ all_audio_features_mlp = hvd.allgather(audio_features_mlp)
34
+ all_text_features_mlp = hvd.allgather(text_features_mlp)
35
+ else:
36
+ with torch.no_grad():
37
+ all_audio_features = hvd.allgather(audio_features)
38
+ all_text_features = hvd.allgather(text_features)
39
+ if mlp_loss:
40
+ all_audio_features_mlp = hvd.allgather(audio_features_mlp)
41
+ all_text_features_mlp = hvd.allgather(text_features_mlp)
42
+ if not local_loss:
43
+ # ensure grads for local rank when all_* features don't have a gradient
44
+ gathered_audio_features = list(
45
+ all_audio_features.chunk(world_size, dim=0)
46
+ )
47
+ gathered_text_features = list(
48
+ all_text_features.chunk(world_size, dim=0)
49
+ )
50
+ gathered_audio_features[rank] = audio_features
51
+ gathered_text_features[rank] = text_features
52
+ all_audio_features = torch.cat(gathered_audio_features, dim=0)
53
+ all_text_features = torch.cat(gathered_text_features, dim=0)
54
+ if mlp_loss:
55
+ gathered_audio_features_mlp = list(
56
+ all_audio_features_mlp.chunk(world_size, dim=0)
57
+ )
58
+ gathered_text_features_mlp = list(
59
+ all_text_features_mlp.chunk(world_size, dim=0)
60
+ )
61
+ gathered_audio_features_mlp[rank] = audio_features_mlp
62
+ gathered_text_features_mlp[rank] = text_features_mlp
63
+ all_audio_features_mlp = torch.cat(
64
+ gathered_audio_features_mlp, dim=0
65
+ )
66
+ all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
67
+ else:
68
+ # We gather tensors from all gpus
69
+ if gather_with_grad:
70
+ all_audio_features = torch.cat(
71
+ torch.distributed.nn.all_gather(audio_features), dim=0
72
+ )
73
+ all_text_features = torch.cat(
74
+ torch.distributed.nn.all_gather(text_features), dim=0
75
+ )
76
+ if mlp_loss:
77
+ all_audio_features_mlp = torch.cat(
78
+ torch.distributed.nn.all_gather(audio_features_mlp), dim=0
79
+ )
80
+ all_text_features_mlp = torch.cat(
81
+ torch.distributed.nn.all_gather(text_features_mlp), dim=0
82
+ )
83
+ else:
84
+ gathered_audio_features = [
85
+ torch.zeros_like(audio_features) for _ in range(world_size)
86
+ ]
87
+ gathered_text_features = [
88
+ torch.zeros_like(text_features) for _ in range(world_size)
89
+ ]
90
+ dist.all_gather(gathered_audio_features, audio_features)
91
+ dist.all_gather(gathered_text_features, text_features)
92
+ if mlp_loss:
93
+ gathered_audio_features_mlp = [
94
+ torch.zeros_like(audio_features_mlp) for _ in range(world_size)
95
+ ]
96
+ gathered_text_features_mlp = [
97
+ torch.zeros_like(text_features_mlp) for _ in range(world_size)
98
+ ]
99
+ dist.all_gather(gathered_audio_features_mlp, audio_features_mlp)
100
+ dist.all_gather(gathered_text_features_mlp, text_features_mlp)
101
+ if not local_loss:
102
+ # ensure grads for local rank when all_* features don't have a gradient
103
+ gathered_audio_features[rank] = audio_features
104
+ gathered_text_features[rank] = text_features
105
+ if mlp_loss:
106
+ gathered_audio_features_mlp[rank] = audio_features_mlp
107
+ gathered_text_features_mlp[rank] = text_features_mlp
108
+
109
+ all_audio_features = torch.cat(gathered_audio_features, dim=0)
110
+ all_text_features = torch.cat(gathered_text_features, dim=0)
111
+ if mlp_loss:
112
+ all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
113
+ all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
114
+ if mlp_loss:
115
+ return (
116
+ all_audio_features,
117
+ all_text_features,
118
+ all_audio_features_mlp,
119
+ all_text_features_mlp,
120
+ )
121
+ else:
122
+ return all_audio_features, all_text_features
123
+
124
+
125
+ class ClipLoss(nn.Module):
126
+ def __init__(
127
+ self,
128
+ local_loss=False,
129
+ gather_with_grad=False,
130
+ cache_labels=False,
131
+ rank=0,
132
+ world_size=1,
133
+ use_horovod=False,
134
+ mlp_loss=False,
135
+ weight_loss_kappa=0,
136
+ ):
137
+ super().__init__()
138
+ self.local_loss = local_loss
139
+ self.gather_with_grad = gather_with_grad
140
+ self.cache_labels = cache_labels
141
+ self.rank = rank
142
+ self.world_size = world_size
143
+ self.use_horovod = use_horovod
144
+ self.mlp_loss = mlp_loss
145
+ self.weighted_loss = bool(weight_loss_kappa != 0)
146
+ self.weight_loss_kappa = weight_loss_kappa
147
+ # cache state
148
+ self.prev_num_logits = 0
149
+ self.labels = {}
150
+
151
+ def forward(
152
+ self,
153
+ audio_features,
154
+ text_features,
155
+ logit_scale_a,
156
+ logit_scale_t=None,
157
+ audio_features_mlp=None,
158
+ text_features_mlp=None,
159
+ ):
160
+ device = audio_features.device
161
+ if self.mlp_loss:
162
+ if self.world_size > 1:
163
+ (
164
+ all_audio_features,
165
+ all_text_features,
166
+ all_audio_features_mlp,
167
+ all_text_features_mlp,
168
+ ) = gather_features(
169
+ audio_features=audio_features,
170
+ text_features=text_features,
171
+ audio_features_mlp=audio_features_mlp,
172
+ text_features_mlp=text_features_mlp,
173
+ local_loss=self.local_loss,
174
+ gather_with_grad=self.gather_with_grad,
175
+ rank=self.rank,
176
+ world_size=self.world_size,
177
+ use_horovod=self.use_horovod,
178
+ mlp_loss=self.mlp_loss,
179
+ )
180
+ if self.local_loss:
181
+ a_logits_per_audio = (
182
+ logit_scale_a * audio_features @ all_text_features_mlp.T
183
+ )
184
+ a_logits_per_text = (
185
+ logit_scale_a * text_features_mlp @ all_audio_features.T
186
+ )
187
+ t_logits_per_audio = (
188
+ logit_scale_t * audio_features_mlp @ all_text_features.T
189
+ )
190
+ t_logits_per_text = (
191
+ logit_scale_t * text_features @ all_audio_features_mlp.T
192
+ )
193
+ else:
194
+ a_logits_per_audio = (
195
+ logit_scale_a * all_audio_features @ all_text_features_mlp.T
196
+ )
197
+ a_logits_per_text = a_logits_per_audio.T
198
+ t_logits_per_audio = (
199
+ logit_scale_t * all_audio_features_mlp @ all_text_features.T
200
+ )
201
+ t_logits_per_text = t_logits_per_audio.T
202
+ else:
203
+ a_logits_per_audio = (
204
+ logit_scale_a * audio_features @ text_features_mlp.T
205
+ )
206
+ a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T
207
+ t_logits_per_audio = (
208
+ logit_scale_t * audio_features_mlp @ text_features.T
209
+ )
210
+ t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T
211
+
212
+ # calculated ground-truth and cache if enabled
213
+ num_logits = a_logits_per_audio.shape[0]
214
+ if self.prev_num_logits != num_logits or device not in self.labels:
215
+ labels = torch.arange(num_logits, device=device, dtype=torch.long)
216
+ if self.world_size > 1 and self.local_loss:
217
+ labels = labels + num_logits * self.rank
218
+ if self.cache_labels:
219
+ self.labels[device] = labels
220
+ self.prev_num_logits = num_logits
221
+ else:
222
+ labels = self.labels[device]
223
+
224
+ if not self.weighted_loss:
225
+ total_loss = (
226
+ F.cross_entropy(a_logits_per_audio, labels)
227
+ + F.cross_entropy(a_logits_per_text, labels)
228
+ + F.cross_entropy(t_logits_per_audio, labels)
229
+ + F.cross_entropy(t_logits_per_text, labels)
230
+ ) / 4
231
+ else:
232
+ audio_weight = (audio_features @ audio_features.T).detach()
233
+ audio_weight = (
234
+ torch.exp(
235
+ torch.sum(audio_weight, axis=1)
236
+ / (self.weight_loss_kappa * len(audio_weight))
237
+ )
238
+ ).detach()
239
+ text_weight = (text_features @ text_features.T).detach()
240
+ text_weight = (
241
+ torch.exp(
242
+ torch.sum(text_weight, axis=1)
243
+ / (self.weight_loss_kappa * len(text_features))
244
+ )
245
+ ).detach()
246
+ total_loss = (
247
+ F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight)
248
+ + F.cross_entropy(a_logits_per_text, labels, weight=audio_weight)
249
+ + F.cross_entropy(t_logits_per_audio, labels, weight=text_weight)
250
+ + F.cross_entropy(t_logits_per_text, labels, weight=text_weight)
251
+ ) / 4
252
+ else:
253
+ if self.world_size > 1:
254
+ all_audio_features, all_text_features = gather_features(
255
+ audio_features=audio_features,
256
+ text_features=text_features,
257
+ local_loss=self.local_loss,
258
+ gather_with_grad=self.gather_with_grad,
259
+ rank=self.rank,
260
+ world_size=self.world_size,
261
+ use_horovod=self.use_horovod,
262
+ mlp_loss=self.mlp_loss,
263
+ )
264
+
265
+ if self.local_loss:
266
+ logits_per_audio = (
267
+ logit_scale_a * audio_features @ all_text_features.T
268
+ )
269
+ logits_per_text = (
270
+ logit_scale_a * text_features @ all_audio_features.T
271
+ )
272
+ else:
273
+ logits_per_audio = (
274
+ logit_scale_a * all_audio_features @ all_text_features.T
275
+ )
276
+ logits_per_text = logits_per_audio.T
277
+ else:
278
+ logits_per_audio = logit_scale_a * audio_features @ text_features.T
279
+ logits_per_text = logit_scale_a * text_features @ audio_features.T
280
+
281
+ # calculated ground-truth and cache if enabled
282
+ num_logits = logits_per_audio.shape[0]
283
+ if self.prev_num_logits != num_logits or device not in self.labels:
284
+ labels = torch.arange(num_logits, device=device, dtype=torch.long)
285
+ if self.world_size > 1 and self.local_loss:
286
+ labels = labels + num_logits * self.rank
287
+ if self.cache_labels:
288
+ self.labels[device] = labels
289
+ self.prev_num_logits = num_logits
290
+ else:
291
+ labels = self.labels[device]
292
+ if not self.weighted_loss:
293
+ total_loss = (
294
+ F.cross_entropy(logits_per_audio, labels)
295
+ + F.cross_entropy(logits_per_text, labels)
296
+ ) / 2
297
+ else:
298
+ audio_weight = (all_audio_features @ all_audio_features.T).detach()
299
+ audio_weight = (
300
+ torch.exp(
301
+ torch.sum(audio_weight, axis=1)
302
+ / (self.weight_loss_kappa * len(all_audio_features))
303
+ )
304
+ ).detach()
305
+ text_weight = (all_text_features @ all_text_features.T).detach()
306
+ text_weight = (
307
+ torch.exp(
308
+ torch.sum(text_weight, axis=1)
309
+ / (self.weight_loss_kappa * len(all_text_features))
310
+ )
311
+ ).detach()
312
+ total_loss = (
313
+ F.cross_entropy(logits_per_audio, labels, weight=text_weight)
314
+ + F.cross_entropy(logits_per_text, labels, weight=audio_weight)
315
+ ) / 2
316
+ return total_loss
317
+
318
+
319
+ def lp_gather_features(pred, target, world_size=1, use_horovod=False):
320
+ if use_horovod:
321
+ assert hvd is not None, "Please install horovod"
322
+ with torch.no_grad():
323
+ all_preds = hvd.allgather(pred)
324
+ all_targets = hvd.allgath(target)
325
+ else:
326
+ gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)]
327
+ gathered_targets = [torch.zeros_like(target) for _ in range(world_size)]
328
+
329
+ dist.all_gather(gathered_preds, pred)
330
+ dist.all_gather(gathered_targets, target)
331
+ all_preds = torch.cat(gathered_preds, dim=0)
332
+ all_targets = torch.cat(gathered_targets, dim=0)
333
+
334
+ return all_preds, all_targets
335
+
336
+
337
+ def get_map(pred, target):
338
+ pred = torch.sigmoid(pred).numpy()
339
+ target = target.numpy()
340
+ return np.mean(average_precision_score(target, pred, average=None))
341
+
342
+
343
+ def get_acc(pred, target):
344
+ pred = torch.argmax(pred, 1).numpy()
345
+ target = torch.argmax(target, 1).numpy()
346
+ return accuracy_score(target, pred)
347
+
348
+
349
+ def get_mauc(pred, target):
350
+ pred = torch.sigmoid(pred).numpy()
351
+ target = target.numpy()
352
+ return np.mean(roc_auc_score(target, pred, average=None))
353
+
354
+
355
+ class LPMetrics(object):
356
+ def __init__(self, metric_names=["map", "acc", "mauc"]):
357
+ self.metrics = []
358
+ for name in metric_names:
359
+ self.metrics.append(self.get_metric(name))
360
+ self.metric_names = metric_names
361
+
362
+ def get_metric(self, name):
363
+ if name == "map":
364
+ return get_map
365
+ elif name == "acc":
366
+ return get_acc
367
+ elif name == "mauc":
368
+ return get_mauc
369
+ else:
370
+ raise ValueError(f"the metric should be at least one of [map, acc, mauc]")
371
+
372
+ def evaluate_mertics(self, pred, target):
373
+ metric_dict = {}
374
+ for i in range(len(self.metric_names)):
375
+ metric_dict[self.metric_names[i]] = self.metrics[i](pred, target)
376
+ return metric_dict
377
+
378
+
379
+ def calc_celoss(pred, target):
380
+ target = torch.argmax(target, 1).long()
381
+ return nn.CrossEntropyLoss()(pred, target)
382
+
383
+
384
+ class LPLoss(nn.Module):
385
+ def __init__(self, loss_name):
386
+ super().__init__()
387
+ if loss_name == "bce":
388
+ self.loss_func = nn.BCEWithLogitsLoss()
389
+ elif loss_name == "ce":
390
+ self.loss_func = calc_celoss
391
+ elif loss_name == "mse":
392
+ self.loss_func = nn.MSELoss()
393
+ else:
394
+ raise ValueError(f"the loss func should be at least one of [bce, ce, mse]")
395
+
396
+ def forward(self, pred, target):
397
+ loss = self.loss_func(pred, target)
398
+ return loss
models/CLAP/open_clip/model.py ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLAP Model
2
+
3
+ Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ Adapted to the Audio Task.
5
+ """
6
+
7
+ from collections import OrderedDict
8
+ from dataclasses import dataclass
9
+ from email.mime import audio
10
+ from typing import Tuple, Union, Callable, Optional
11
+
12
+ import numpy as np
13
+ import torch
14
+ import torch.nn.functional as F
15
+ from torch import nn
16
+
17
+ from .timm_model import TimmModel
18
+ import logging
19
+ from .utils import freeze_batch_norm_2d
20
+
21
+ from .pann_model import create_pann_model
22
+ from .htsat import create_htsat_model
23
+ from transformers import BertModel, RobertaModel, BartModel, RobertaConfig
24
+ from transformers.tokenization_utils_base import BatchEncoding
25
+
26
+
27
+ class MLPLayers(nn.Module):
28
+ def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1):
29
+ super(MLPLayers, self).__init__()
30
+ self.nonlin = nonlin
31
+ self.dropout = dropout
32
+
33
+ sequence = []
34
+ for u0, u1 in zip(units[:-1], units[1:]):
35
+ sequence.append(nn.Linear(u0, u1))
36
+ sequence.append(self.nonlin)
37
+ sequence.append(nn.Dropout(self.dropout))
38
+ sequence = sequence[:-2]
39
+
40
+ self.sequential = nn.Sequential(*sequence)
41
+
42
+ def forward(self, X):
43
+ X = self.sequential(X)
44
+ return X
45
+
46
+
47
+ class Bottleneck(nn.Module):
48
+ expansion = 4
49
+
50
+ def __init__(self, inplanes, planes, stride=1):
51
+ super().__init__()
52
+
53
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
54
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
55
+ self.bn1 = nn.BatchNorm2d(planes)
56
+
57
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
58
+ self.bn2 = nn.BatchNorm2d(planes)
59
+
60
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
61
+
62
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
63
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
64
+
65
+ self.relu = nn.ReLU(inplace=True)
66
+ self.downsample = None
67
+ self.stride = stride
68
+
69
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
70
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
71
+ self.downsample = nn.Sequential(
72
+ OrderedDict(
73
+ [
74
+ ("-1", nn.AvgPool2d(stride)),
75
+ (
76
+ "0",
77
+ nn.Conv2d(
78
+ inplanes,
79
+ planes * self.expansion,
80
+ 1,
81
+ stride=1,
82
+ bias=False,
83
+ ),
84
+ ),
85
+ ("1", nn.BatchNorm2d(planes * self.expansion)),
86
+ ]
87
+ )
88
+ )
89
+
90
+ def forward(self, x: torch.Tensor):
91
+ identity = x
92
+
93
+ out = self.relu(self.bn1(self.conv1(x)))
94
+ out = self.relu(self.bn2(self.conv2(out)))
95
+ out = self.avgpool(out)
96
+ out = self.bn3(self.conv3(out))
97
+
98
+ if self.downsample is not None:
99
+ identity = self.downsample(x)
100
+
101
+ out += identity
102
+ out = self.relu(out)
103
+ return out
104
+
105
+
106
+ class AttentionPool2d(nn.Module):
107
+ def __init__(
108
+ self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
109
+ ):
110
+ super().__init__()
111
+ self.positional_embedding = nn.Parameter(
112
+ torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
113
+ )
114
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
115
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
116
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
117
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
118
+ self.num_heads = num_heads
119
+
120
+ def forward(self, x):
121
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
122
+ 2, 0, 1
123
+ ) # NCHW -> (HW)NC
124
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
125
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
126
+ x, _ = F.multi_head_attention_forward(
127
+ query=x,
128
+ key=x,
129
+ value=x,
130
+ embed_dim_to_check=x.shape[-1],
131
+ num_heads=self.num_heads,
132
+ q_proj_weight=self.q_proj.weight,
133
+ k_proj_weight=self.k_proj.weight,
134
+ v_proj_weight=self.v_proj.weight,
135
+ in_proj_weight=None,
136
+ in_proj_bias=torch.cat(
137
+ [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
138
+ ),
139
+ bias_k=None,
140
+ bias_v=None,
141
+ add_zero_attn=False,
142
+ dropout_p=0,
143
+ out_proj_weight=self.c_proj.weight,
144
+ out_proj_bias=self.c_proj.bias,
145
+ use_separate_proj_weight=True,
146
+ training=self.training,
147
+ need_weights=False,
148
+ )
149
+
150
+ return x[0]
151
+
152
+
153
+ class ModifiedResNet(nn.Module):
154
+ """
155
+ A ResNet class that is similar to torchvision's but contains the following changes:
156
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
157
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
158
+ - The final pooling layer is a QKV attention instead of an average pool
159
+ """
160
+
161
+ def __init__(self, layers, output_dim, heads, image_size=224, width=64):
162
+ super().__init__()
163
+ self.output_dim = output_dim
164
+ self.image_size = image_size
165
+
166
+ # the 3-layer stem
167
+ self.conv1 = nn.Conv2d(
168
+ 3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
169
+ )
170
+ self.bn1 = nn.BatchNorm2d(width // 2)
171
+ self.conv2 = nn.Conv2d(
172
+ width // 2, width // 2, kernel_size=3, padding=1, bias=False
173
+ )
174
+ self.bn2 = nn.BatchNorm2d(width // 2)
175
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
176
+ self.bn3 = nn.BatchNorm2d(width)
177
+ self.avgpool = nn.AvgPool2d(2)
178
+ self.relu = nn.ReLU(inplace=True)
179
+
180
+ # residual layers
181
+ self._inplanes = width # this is a *mutable* variable used during construction
182
+ self.layer1 = self._make_layer(width, layers[0])
183
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
184
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
185
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
186
+
187
+ embed_dim = width * 32 # the ResNet feature dimension
188
+ self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
189
+
190
+ self.init_parameters()
191
+
192
+ def _make_layer(self, planes, blocks, stride=1):
193
+ layers = [Bottleneck(self._inplanes, planes, stride)]
194
+
195
+ self._inplanes = planes * Bottleneck.expansion
196
+ for _ in range(1, blocks):
197
+ layers.append(Bottleneck(self._inplanes, planes))
198
+
199
+ return nn.Sequential(*layers)
200
+
201
+ def init_parameters(self):
202
+ if self.attnpool is not None:
203
+ std = self.attnpool.c_proj.in_features**-0.5
204
+ nn.init.normal_(self.attnpool.q_proj.weight, std=std)
205
+ nn.init.normal_(self.attnpool.k_proj.weight, std=std)
206
+ nn.init.normal_(self.attnpool.v_proj.weight, std=std)
207
+ nn.init.normal_(self.attnpool.c_proj.weight, std=std)
208
+
209
+ for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
210
+ for name, param in resnet_block.named_parameters():
211
+ if name.endswith("bn3.weight"):
212
+ nn.init.zeros_(param)
213
+
214
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
215
+ assert (
216
+ unlocked_groups == 0
217
+ ), "partial locking not currently supported for this model"
218
+ for param in self.parameters():
219
+ param.requires_grad = False
220
+ if freeze_bn_stats:
221
+ freeze_batch_norm_2d(self)
222
+
223
+ def stem(self, x):
224
+ for conv, bn in [
225
+ (self.conv1, self.bn1),
226
+ (self.conv2, self.bn2),
227
+ (self.conv3, self.bn3),
228
+ ]:
229
+ x = self.relu(bn(conv(x)))
230
+ x = self.avgpool(x)
231
+ return x
232
+
233
+ def forward(self, x):
234
+ x = self.stem(x)
235
+ x = self.layer1(x)
236
+ x = self.layer2(x)
237
+ x = self.layer3(x)
238
+ x = self.layer4(x)
239
+ x = self.attnpool(x)
240
+
241
+ return x
242
+
243
+
244
+ class LayerNorm(nn.LayerNorm):
245
+ """Subclass torch's LayerNorm to handle fp16."""
246
+
247
+ def forward(self, x: torch.Tensor):
248
+ orig_type = x.dtype
249
+ x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
250
+ return x.to(orig_type)
251
+
252
+
253
+ class QuickGELU(nn.Module):
254
+ # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
255
+ def forward(self, x: torch.Tensor):
256
+ return x * torch.sigmoid(1.702 * x)
257
+
258
+
259
+ class ResidualAttentionBlock(nn.Module):
260
+ def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
261
+ super().__init__()
262
+
263
+ self.attn = nn.MultiheadAttention(d_model, n_head)
264
+ self.ln_1 = LayerNorm(d_model)
265
+ self.mlp = nn.Sequential(
266
+ OrderedDict(
267
+ [
268
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
269
+ ("gelu", act_layer()),
270
+ ("c_proj", nn.Linear(d_model * 4, d_model)),
271
+ ]
272
+ )
273
+ )
274
+ self.ln_2 = LayerNorm(d_model)
275
+
276
+ def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
277
+ return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
278
+
279
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
280
+ x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
281
+ x = x + self.mlp(self.ln_2(x))
282
+ return x
283
+
284
+
285
+ class Transformer(nn.Module):
286
+ def __init__(
287
+ self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
288
+ ):
289
+ super().__init__()
290
+ self.width = width
291
+ self.layers = layers
292
+ self.resblocks = nn.ModuleList(
293
+ [
294
+ ResidualAttentionBlock(width, heads, act_layer=act_layer)
295
+ for _ in range(layers)
296
+ ]
297
+ )
298
+
299
+ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
300
+ for r in self.resblocks:
301
+ x = r(x, attn_mask=attn_mask)
302
+ return x
303
+
304
+
305
+ class VisualTransformer(nn.Module):
306
+ def __init__(
307
+ self,
308
+ image_size: int,
309
+ patch_size: int,
310
+ width: int,
311
+ layers: int,
312
+ heads: int,
313
+ output_dim: int,
314
+ act_layer: Callable = nn.GELU,
315
+ ):
316
+ super().__init__()
317
+ self.image_size = image_size
318
+ self.output_dim = output_dim
319
+ self.conv1 = nn.Conv2d(
320
+ in_channels=3,
321
+ out_channels=width,
322
+ kernel_size=patch_size,
323
+ stride=patch_size,
324
+ bias=False,
325
+ )
326
+
327
+ scale = width**-0.5
328
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
329
+ self.positional_embedding = nn.Parameter(
330
+ scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
331
+ )
332
+ self.ln_pre = LayerNorm(width)
333
+
334
+ self.text_branch = Transformer(width, layers, heads, act_layer=act_layer)
335
+
336
+ self.ln_post = LayerNorm(width)
337
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
338
+
339
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
340
+ assert (
341
+ unlocked_groups == 0
342
+ ), "partial locking not currently supported for this model"
343
+ for param in self.parameters():
344
+ param.requires_grad = False
345
+
346
+ def forward(self, x: torch.Tensor):
347
+ x = self.conv1(x) # shape = [*, width, grid, grid]
348
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
349
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
350
+ x = torch.cat(
351
+ [
352
+ self.class_embedding.to(x.dtype)
353
+ + torch.zeros(
354
+ x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
355
+ ),
356
+ x,
357
+ ],
358
+ dim=1,
359
+ ) # shape = [*, grid ** 2 + 1, width]
360
+ x = x + self.positional_embedding.to(x.dtype)
361
+ x = self.ln_pre(x)
362
+
363
+ x = x.permute(1, 0, 2) # NLD -> LND
364
+ x = self.text_branch(x)
365
+ x = x.permute(1, 0, 2) # LND -> NLD
366
+
367
+ x = self.ln_post(x[:, 0, :])
368
+
369
+ if self.proj is not None:
370
+ x = x @ self.proj
371
+
372
+ return x
373
+
374
+
375
+ @dataclass
376
+ class CLAPVisionCfg:
377
+ layers: Union[Tuple[int, int, int, int], int] = 12
378
+ width: int = 768
379
+ patch_size: int = 16
380
+ image_size: Union[Tuple[int, int], int] = 224
381
+ timm_model_name: str = (
382
+ None # a valid model name overrides layers, width, patch_size
383
+ )
384
+ timm_model_pretrained: bool = (
385
+ False # use (imagenet) pretrained weights for named model
386
+ )
387
+ timm_pool: str = (
388
+ "avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
389
+ )
390
+ timm_proj: str = (
391
+ "linear" # linear projection for timm model output ('linear', 'mlp', '')
392
+ )
393
+
394
+
395
+ # Audio Config Class
396
+ @dataclass
397
+ class CLAPAudioCfp:
398
+ model_type: str = "PANN"
399
+ model_name: str = "Cnn14"
400
+ sample_rate: int = 48000
401
+ # Param
402
+ audio_length: int = 1024
403
+ window_size: int = 1024
404
+ hop_size: int = 1024
405
+ fmin: int = 50
406
+ fmax: int = 14000
407
+ class_num: int = 527
408
+ mel_bins: int = 64
409
+ clip_samples: int = 480000
410
+
411
+
412
+ @dataclass
413
+ class CLAPTextCfg:
414
+ context_length: int
415
+ vocab_size: int
416
+ width: int
417
+ heads: int
418
+ layers: int
419
+ model_type: str
420
+
421
+
422
+ class CLAP(nn.Module):
423
+ def __init__(
424
+ self,
425
+ embed_dim: int,
426
+ audio_cfg: CLAPAudioCfp,
427
+ text_cfg: CLAPTextCfg,
428
+ quick_gelu: bool = False,
429
+ enable_fusion: bool = False,
430
+ fusion_type: str = "None",
431
+ joint_embed_shape: int = 512,
432
+ mlp_act: str = "relu",
433
+ ):
434
+ super().__init__()
435
+ if isinstance(audio_cfg, dict):
436
+ audio_cfg = CLAPAudioCfp(**audio_cfg)
437
+ if isinstance(text_cfg, dict):
438
+ text_cfg = CLAPTextCfg(**text_cfg)
439
+
440
+ self.audio_cfg = audio_cfg
441
+ self.text_cfg = text_cfg
442
+ self.enable_fusion = enable_fusion
443
+ self.fusion_type = fusion_type
444
+ self.joint_embed_shape = joint_embed_shape
445
+ self.mlp_act = mlp_act
446
+
447
+ self.context_length = text_cfg.context_length
448
+
449
+ # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
450
+ # memory efficient in recent PyTorch releases (>= 1.10).
451
+ # NOTE: timm models always use native GELU regardless of quick_gelu flag.
452
+ act_layer = QuickGELU if quick_gelu else nn.GELU
453
+
454
+ if mlp_act == "relu":
455
+ mlp_act_layer = nn.ReLU()
456
+ elif mlp_act == "gelu":
457
+ mlp_act_layer = nn.GELU()
458
+ else:
459
+ raise NotImplementedError
460
+
461
+ # audio branch
462
+ # audio branch parameters
463
+ if audio_cfg.model_type == "PANN":
464
+ self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type)
465
+ elif audio_cfg.model_type == "HTSAT":
466
+ self.audio_branch = create_htsat_model(
467
+ audio_cfg, enable_fusion, fusion_type
468
+ )
469
+ else:
470
+ logging.error(f"Model config for {audio_cfg.model_type} not found")
471
+ raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.")
472
+
473
+ # text branch
474
+ # text branch parameters
475
+ if text_cfg.model_type == "transformer":
476
+ self.text_branch = Transformer(
477
+ width=text_cfg.width,
478
+ layers=text_cfg.layers,
479
+ heads=text_cfg.heads,
480
+ act_layer=act_layer,
481
+ )
482
+ self.vocab_size = text_cfg.vocab_size
483
+ self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
484
+ self.positional_embedding = nn.Parameter(
485
+ torch.empty(self.context_length, text_cfg.width)
486
+ )
487
+ self.ln_final = LayerNorm(text_cfg.width)
488
+ self.text_transform = MLPLayers(
489
+ units=[
490
+ self.joint_embed_shape,
491
+ self.joint_embed_shape,
492
+ self.joint_embed_shape,
493
+ ],
494
+ dropout=0.1,
495
+ )
496
+ self.text_projection = nn.Sequential(
497
+ nn.Linear(text_cfg.width, self.joint_embed_shape),
498
+ mlp_act_layer,
499
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
500
+ )
501
+ elif text_cfg.model_type == "bert":
502
+ self.text_branch = BertModel.from_pretrained("bert-base-uncased")
503
+ self.text_transform = MLPLayers(
504
+ units=[
505
+ self.joint_embed_shape,
506
+ self.joint_embed_shape,
507
+ self.joint_embed_shape,
508
+ ],
509
+ dropout=0.1,
510
+ )
511
+ self.text_projection = nn.Sequential(
512
+ nn.Linear(768, self.joint_embed_shape),
513
+ mlp_act_layer,
514
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
515
+ )
516
+ elif text_cfg.model_type == "roberta":
517
+ self.text_branch = RobertaModel.from_pretrained("roberta-base")
518
+
519
+ self.text_transform = MLPLayers(
520
+ units=[
521
+ self.joint_embed_shape,
522
+ self.joint_embed_shape,
523
+ self.joint_embed_shape,
524
+ ],
525
+ dropout=0.1,
526
+ )
527
+ self.text_projection = nn.Sequential(
528
+ nn.Linear(768, self.joint_embed_shape),
529
+ mlp_act_layer,
530
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
531
+ )
532
+ elif text_cfg.model_type == "bart":
533
+ self.text_branch = BartModel.from_pretrained("facebook/bart-base")
534
+ self.text_transform = MLPLayers(
535
+ units=[
536
+ self.joint_embed_shape,
537
+ self.joint_embed_shape,
538
+ self.joint_embed_shape,
539
+ ],
540
+ dropout=0.1,
541
+ )
542
+ self.text_projection = nn.Sequential(
543
+ nn.Linear(768, self.joint_embed_shape),
544
+ mlp_act_layer,
545
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
546
+ )
547
+ else:
548
+ logging.error(f"Model config for {text_cfg.model_type} not found")
549
+ raise RuntimeError(f"Model config for {text_cfg.model_type} not found.")
550
+ self.text_branch_type = text_cfg.model_type
551
+ # text branch parameters
552
+
553
+ # audio branch parameters
554
+ self.audio_transform = MLPLayers(
555
+ units=[
556
+ self.joint_embed_shape,
557
+ self.joint_embed_shape,
558
+ self.joint_embed_shape,
559
+ ],
560
+ dropout=0.1,
561
+ )
562
+
563
+ # below here is text branch parameters
564
+
565
+ # ============================================================================================================
566
+ self.audio_projection = nn.Sequential(
567
+ nn.Linear(embed_dim, self.joint_embed_shape),
568
+ mlp_act_layer,
569
+ nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
570
+ )
571
+
572
+ self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
573
+ self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
574
+ self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
575
+
576
+ self.init_text_branch_parameters()
577
+
578
+ def init_text_branch_parameters(self):
579
+ if self.text_branch_type == "transformer":
580
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
581
+ nn.init.normal_(self.positional_embedding, std=0.01)
582
+ proj_std = (self.text_branch.width**-0.5) * (
583
+ (2 * self.text_branch.layers) ** -0.5
584
+ )
585
+ attn_std = self.text_branch.width**-0.5
586
+ fc_std = (2 * self.text_branch.width) ** -0.5
587
+ for block in self.text_branch.resblocks:
588
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
589
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
590
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
591
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
592
+ if self.text_branch_type == "bert" or self.text_branch_type == "roberta":
593
+ width = self.text_branch.embeddings.word_embeddings.weight.shape[-1]
594
+ elif self.text_branch_type == "bart":
595
+ width = self.text_branch.shared.weight.shape[-1]
596
+ else:
597
+ width = self.text_branch.width
598
+ nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07))
599
+ nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07))
600
+
601
+ # deprecated
602
+ # if hasattr(self.visual, 'init_parameters'):
603
+ # self.visual.init_parameters()
604
+
605
+ # if self.text_projection is not None:
606
+ # nn.init.normal_(self.text_projection, std=width**-0.5)
607
+
608
+ def build_attention_mask(self):
609
+ # lazily create causal attention mask, with full attention between the vision tokens
610
+ # pytorch uses additive attention mask; fill with -inf
611
+ mask = torch.empty(self.context_length, self.context_length)
612
+ mask.fill_(float("-inf"))
613
+ mask.triu_(1) # zero out the lower diagonal
614
+ return mask
615
+
616
+ def encode_audio(self, audio, device):
617
+ return self.audio_branch(
618
+ audio, mixup_lambda=None, device=device
619
+ ) # mix lambda needs to add
620
+
621
+ # def list_of_dict_of_tensor2dict_of_tensor(self, x, device):
622
+ # tmp = {}
623
+ # for k in x[0].keys():
624
+ # tmp[k] = []
625
+ # for i in range(len(x)):
626
+ # tmp[k].append(x[i][k][:77])
627
+ # for k in x[0].keys():
628
+ # tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True)
629
+ # return tmp
630
+
631
+ def encode_text(self, text, device):
632
+ if self.text_branch_type == "transformer":
633
+ text = text.to(device=device, non_blocking=True)
634
+ x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
635
+
636
+ x = x + self.positional_embedding
637
+ x = x.permute(1, 0, 2) # NLD -> LND
638
+ x = self.text_branch(x, attn_mask=self.attn_mask)
639
+ x = x.permute(1, 0, 2) # LND -> NLD
640
+ x = self.ln_final(x)
641
+
642
+ # x.shape = [batch_size, n_ctx, transformer.width]
643
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
644
+ x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)])
645
+ elif self.text_branch_type == "bert":
646
+ # text = self.list_of_dict_of_tensor2dict_of_tensor(text, device)
647
+ # text = BatchEncoding(text)
648
+ x = self.text_branch(
649
+ input_ids=text["input_ids"].to(device=device, non_blocking=True),
650
+ attention_mask=text["attention_mask"].to(
651
+ device=device, non_blocking=True
652
+ ),
653
+ token_type_ids=text["token_type_ids"].to(
654
+ device=device, non_blocking=True
655
+ ),
656
+ )["pooler_output"]
657
+ x = self.text_projection(x)
658
+ elif self.text_branch_type == "roberta":
659
+ x = self.text_branch(
660
+ input_ids=text["input_ids"].to(device=device, non_blocking=True),
661
+ attention_mask=text["attention_mask"].to(
662
+ device=device, non_blocking=True
663
+ ),
664
+ )["pooler_output"]
665
+ x = self.text_projection(x)
666
+ elif self.text_branch_type == "bart":
667
+ x = torch.mean(
668
+ self.text_branch(
669
+ input_ids=text["input_ids"].to(device=device, non_blocking=True),
670
+ attention_mask=text["attention_mask"].to(
671
+ device=device, non_blocking=True
672
+ ),
673
+ )["encoder_last_hidden_state"],
674
+ axis=1,
675
+ )
676
+ x = self.text_projection(x)
677
+ else:
678
+ logging.error(f"Model type {self.text_branch_type} not found")
679
+ raise RuntimeError(f"Model type {self.text_branch_type} not found.")
680
+ return x
681
+
682
+ def forward(self, audio, text, device=None):
683
+ """Forward audio and text into the CLAP
684
+
685
+ Parameters
686
+ ----------
687
+ audio: torch.Tensor (batch_size, audio_length)
688
+ the time-domain audio input / the batch of mel_spec and longer list.
689
+ text: torch.Tensor () // need to add
690
+ the text token input
691
+ """
692
+ if device is None:
693
+ if audio is not None:
694
+ device = audio.device
695
+ elif text is not None:
696
+ device = text.device
697
+ if audio is None and text is None:
698
+ # a hack to get the logit scale
699
+ return self.logit_scale_a.exp(), self.logit_scale_t.exp()
700
+ elif audio is None:
701
+ return self.encode_text(text, device=device)
702
+ elif text is None:
703
+ return self.audio_projection(
704
+ self.encode_audio(audio, device=device)["embedding"]
705
+ )
706
+ audio_features = self.audio_projection(
707
+ self.encode_audio(audio, device=device)["embedding"]
708
+ )
709
+ audio_features = F.normalize(audio_features, dim=-1)
710
+
711
+ text_features = self.encode_text(text, device=device)
712
+ # print("text_features", text_features)
713
+ # print("text_features.shape", text_features.shape)
714
+ # print("text_features.type", type(text_features))
715
+ text_features = F.normalize(text_features, dim=-1)
716
+
717
+ audio_features_mlp = self.audio_transform(audio_features)
718
+ text_features_mlp = self.text_transform(text_features)
719
+ # Four outputs: audio features (basic & MLP), text features (basic & MLP)
720
+ return (
721
+ audio_features,
722
+ text_features,
723
+ audio_features_mlp,
724
+ text_features_mlp,
725
+ self.logit_scale_a.exp(),
726
+ self.logit_scale_t.exp(),
727
+ )
728
+
729
+ def get_logit_scale(self):
730
+ return self.logit_scale_a.exp(), self.logit_scale_t.exp()
731
+
732
+ def get_text_embedding(self, data):
733
+ """Get the text embedding from the model
734
+
735
+ Parameters
736
+ ----------
737
+ data: torch.Tensor
738
+ a tensor of text embedding
739
+
740
+ Returns
741
+ ----------
742
+ text_embed: torch.Tensor
743
+ a tensor of text_embeds (N, D)
744
+
745
+ """
746
+ device = next(self.parameters()).device
747
+ for k in data:
748
+ data[k] = data[k].to(device)
749
+ text_embeds = self.encode_text(data, device=device)
750
+ text_embeds = F.normalize(text_embeds, dim=-1)
751
+
752
+ return text_embeds
753
+
754
+ def get_audio_embedding(self, data):
755
+ """Get the audio embedding from the model
756
+
757
+ Parameters
758
+ ----------
759
+ data: a list of dict
760
+ the audio input dict list from 'get_audio_feature' method
761
+
762
+ Returns
763
+ ----------
764
+ audio_embed: torch.Tensor
765
+ a tensor of audio_embeds (N, D)
766
+
767
+ """
768
+ device = next(self.parameters()).device
769
+ input_dict = {}
770
+ keys = data[0].keys()
771
+ for k in keys:
772
+ input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to(
773
+ device
774
+ )
775
+
776
+ audio_embeds = self.audio_projection(
777
+ self.encode_audio(input_dict, device=device)["embedding"]
778
+ )
779
+ audio_embeds = F.normalize(audio_embeds, dim=-1)
780
+
781
+ return audio_embeds
782
+
783
+ def audio_infer(self, audio, hopsize=None, device=None):
784
+ """Forward one audio and produce the audio embedding
785
+
786
+ Parameters
787
+ ----------
788
+ audio: (audio_length)
789
+ the time-domain audio input, notice that it must be only one input
790
+ hopsize: int
791
+ the overlap hopsize as the sliding window
792
+
793
+ Returns
794
+ ----------
795
+ output_dict: {
796
+ key: [n, (embedding_shape)] if "HTS-AT"
797
+ or
798
+ key: [(embedding_shape)] if "PANN"
799
+ }
800
+ the list of key values of the audio branch
801
+
802
+ """
803
+
804
+ assert not self.training, "the inference mode must be run at eval stage"
805
+ output_dict = {}
806
+ # PANN
807
+ if self.audio_cfg.model_type == "PANN":
808
+ audio_input = audio.unsqueeze(dim=0)
809
+ output_dict[key] = self.encode_audio(audio_input, device=device)[
810
+ key
811
+ ].squeeze(dim=0)
812
+ elif self.audio_cfg.model_type == "HTSAT":
813
+ # repeat
814
+ audio_len = len(audio)
815
+ k = self.audio_cfg.clip_samples // audio_len
816
+ if k > 1:
817
+ audio = audio.repeat(k)
818
+ audio_len = len(audio)
819
+
820
+ if hopsize is None:
821
+ hopsize = min(hopsize, audio_len)
822
+
823
+ if audio_len > self.audio_cfg.clip_samples:
824
+ audio_input = [
825
+ audio[pos : pos + self.audio_cfg.clip_samples].clone()
826
+ for pos in range(
827
+ 0, audio_len - self.audio_cfg.clip_samples, hopsize
828
+ )
829
+ ]
830
+ audio_input.append(audio[-self.audio_cfg.clip_samples :].clone())
831
+ audio_input = torch.stack(audio_input)
832
+ output_dict[key] = self.encode_audio(audio_input, device=device)[key]
833
+ else:
834
+ audio_input = audio.unsqueeze(dim=0)
835
+ output_dict[key] = self.encode_audio(audio_input, device=device)[
836
+ key
837
+ ].squeeze(dim=0)
838
+
839
+ return output_dict
840
+
841
+
842
+ def convert_weights_to_fp16(model: nn.Module):
843
+ """Convert applicable model parameters to fp16"""
844
+
845
+ def _convert_weights_to_fp16(l):
846
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
847
+ l.weight.data = l.weight.data.half()
848
+ if l.bias is not None:
849
+ l.bias.data = l.bias.data.half()
850
+
851
+ if isinstance(l, nn.MultiheadAttention):
852
+ for attr in [
853
+ *[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
854
+ "in_proj_bias",
855
+ "bias_k",
856
+ "bias_v",
857
+ ]:
858
+ tensor = getattr(l, attr)
859
+ if tensor is not None:
860
+ tensor.data = tensor.data.half()
861
+
862
+ for name in ["text_projection", "proj"]:
863
+ if hasattr(l, name):
864
+ attr = getattr(l, name)
865
+ if attr is not None:
866
+ attr.data = attr.data.half()
867
+
868
+ model.apply(_convert_weights_to_fp16)
869
+
870
+
871
+ # Ignore the state dict of the vision part
872
+ def build_model_from_openai_state_dict(
873
+ state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = "None"
874
+ ):
875
+
876
+ embed_dim = model_cfg["embed_dim"]
877
+ audio_cfg = model_cfg["audio_cfg"]
878
+ text_cfg = model_cfg["text_cfg"]
879
+ context_length = state_dict["positional_embedding"].shape[0]
880
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
881
+ transformer_width = state_dict["ln_final.weight"].shape[0]
882
+ transformer_heads = transformer_width // 64
883
+ transformer_layers = len(
884
+ set(
885
+ k.split(".")[2]
886
+ for k in state_dict
887
+ if k.startswith(f"transformer.resblocks")
888
+ )
889
+ )
890
+
891
+ audio_cfg = CLAPAudioCfp(**audio_cfg)
892
+ text_cfg = CLAPTextCfg(**text_cfg)
893
+
894
+ model = CLAP(
895
+ embed_dim,
896
+ audio_cfg=audio_cfg,
897
+ text_cfg=text_cfg,
898
+ quick_gelu=True, # OpenAI models were trained with QuickGELU
899
+ enable_fusion=enable_fusion,
900
+ fusion_type=fusion_type,
901
+ )
902
+ state_dict["logit_scale_a"] = state_dict["logit_scale"]
903
+ state_dict["logit_scale_t"] = state_dict["logit_scale"]
904
+ pop_keys = list(state_dict.keys())[::]
905
+ # pop the visual branch saved weights
906
+ for key in pop_keys:
907
+ if key.startswith("visual."):
908
+ state_dict.pop(key, None)
909
+
910
+ for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]:
911
+ state_dict.pop(key, None)
912
+
913
+ # not use fp16
914
+ # convert_weights_to_fp16(model)
915
+ model.load_state_dict(state_dict, strict=False)
916
+ return model.eval()
917
+
918
+
919
+ def trace_model(model, batch_size=256, device=torch.device("cpu")):
920
+ model.eval()
921
+ audio_length = model.audio_cfg.audio_length
922
+ example_audio = torch.ones((batch_size, audio_length), device=device)
923
+ example_text = torch.zeros(
924
+ (batch_size, model.context_length), dtype=torch.int, device=device
925
+ )
926
+ model = torch.jit.trace_module(
927
+ model,
928
+ inputs=dict(
929
+ forward=(example_audio, example_text),
930
+ encode_text=(example_text,),
931
+ encode_image=(example_audio,),
932
+ ),
933
+ )
934
+ model.audio_cfg.audio_length = audio_length # Question: what does this do?
935
+ return model
models/CLAP/open_clip/model_configs/HTSAT-base.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "base"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/HTSAT-large.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "large"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/HTSAT-tiny-win-1536.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1536,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "tiny"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/HTSAT-tiny.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "HTSAT",
14
+ "model_name": "tiny"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-10.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn10"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-14-fmax-18k.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 18000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-14-fmax-8k-20s.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 960000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 360,
10
+ "fmin": 50,
11
+ "fmax": 8000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-14-tiny-transformer.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 4
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-14-win-1536.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1536,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-14.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 2048,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn14"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/PANN-6.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "audio_cfg": {
4
+ "audio_length": 1024,
5
+ "clip_samples": 480000,
6
+ "mel_bins": 64,
7
+ "sample_rate": 48000,
8
+ "window_size": 1024,
9
+ "hop_size": 480,
10
+ "fmin": 50,
11
+ "fmax": 14000,
12
+ "class_num": 527,
13
+ "model_type": "PANN",
14
+ "model_name": "Cnn6"
15
+ },
16
+ "text_cfg": {
17
+ "context_length": 77,
18
+ "vocab_size": 49408,
19
+ "width": 512,
20
+ "heads": 8,
21
+ "layers": 12
22
+ }
23
+ }
models/CLAP/open_clip/model_configs/RN101-quickgelu.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "quick_gelu": true,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": [
7
+ 3,
8
+ 4,
9
+ 23,
10
+ 3
11
+ ],
12
+ "width": 64,
13
+ "patch_size": null
14
+ },
15
+ "text_cfg": {
16
+ "context_length": 77,
17
+ "vocab_size": 49408,
18
+ "width": 512,
19
+ "heads": 8,
20
+ "layers": 12
21
+ }
22
+ }
models/CLAP/open_clip/model_configs/RN101.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": [
6
+ 3,
7
+ 4,
8
+ 23,
9
+ 3
10
+ ],
11
+ "width": 64,
12
+ "patch_size": null
13
+ },
14
+ "text_cfg": {
15
+ "context_length": 77,
16
+ "vocab_size": 49408,
17
+ "width": 512,
18
+ "heads": 8,
19
+ "layers": 12
20
+ }
21
+ }
models/CLAP/open_clip/model_configs/RN50-quickgelu.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "quick_gelu": true,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": [
7
+ 3,
8
+ 4,
9
+ 6,
10
+ 3
11
+ ],
12
+ "width": 64,
13
+ "patch_size": null
14
+ },
15
+ "text_cfg": {
16
+ "context_length": 77,
17
+ "vocab_size": 49408,
18
+ "width": 512,
19
+ "heads": 8,
20
+ "layers": 12
21
+ }
22
+ }
models/CLAP/open_clip/model_configs/RN50.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 1024,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": [
6
+ 3,
7
+ 4,
8
+ 6,
9
+ 3
10
+ ],
11
+ "width": 64,
12
+ "patch_size": null
13
+ },
14
+ "text_cfg": {
15
+ "context_length": 77,
16
+ "vocab_size": 49408,
17
+ "width": 512,
18
+ "heads": 8,
19
+ "layers": 12
20
+ }
21
+ }
models/CLAP/open_clip/model_configs/RN50x16.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 384,
5
+ "layers": [
6
+ 6,
7
+ 8,
8
+ 18,
9
+ 8
10
+ ],
11
+ "width": 96,
12
+ "patch_size": null
13
+ },
14
+ "text_cfg": {
15
+ "context_length": 77,
16
+ "vocab_size": 49408,
17
+ "width": 768,
18
+ "heads": 12,
19
+ "layers": 12
20
+ }
21
+ }
models/CLAP/open_clip/model_configs/RN50x4.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 640,
3
+ "vision_cfg": {
4
+ "image_size": 288,
5
+ "layers": [
6
+ 4,
7
+ 6,
8
+ 10,
9
+ 6
10
+ ],
11
+ "width": 80,
12
+ "patch_size": null
13
+ },
14
+ "text_cfg": {
15
+ "context_length": 77,
16
+ "vocab_size": 49408,
17
+ "width": 640,
18
+ "heads": 10,
19
+ "layers": 12
20
+ }
21
+ }
models/CLAP/open_clip/model_configs/ViT-B-16.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 16
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 512,
13
+ "heads": 8,
14
+ "layers": 12
15
+ }
16
+ }
models/CLAP/open_clip/model_configs/ViT-B-32-quickgelu.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "quick_gelu": true,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": 12,
7
+ "width": 768,
8
+ "patch_size": 32
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 512,
14
+ "heads": 8,
15
+ "layers": 12
16
+ }
17
+ }
models/CLAP/open_clip/model_configs/ViT-B-32.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 12,
6
+ "width": 768,
7
+ "patch_size": 32
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 512,
13
+ "heads": 8,
14
+ "layers": 12
15
+ }
16
+ }
models/CLAP/open_clip/model_configs/ViT-L-14.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "vision_cfg": {
4
+ "image_size": 224,
5
+ "layers": 24,
6
+ "width": 1024,
7
+ "patch_size": 14
8
+ },
9
+ "text_cfg": {
10
+ "context_length": 77,
11
+ "vocab_size": 49408,
12
+ "width": 768,
13
+ "heads": 12,
14
+ "layers": 12
15
+ }
16
+ }
models/CLAP/open_clip/openai.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ OpenAI pretrained model functions
2
+
3
+ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+
6
+ import os
7
+ import warnings
8
+ from typing import Union, List
9
+
10
+ import torch
11
+
12
+ from .model import build_model_from_openai_state_dict
13
+ from .pretrained import (
14
+ get_pretrained_url,
15
+ list_pretrained_tag_models,
16
+ download_pretrained,
17
+ )
18
+
19
+ __all__ = ["list_openai_models", "load_openai_model"]
20
+
21
+
22
+ def list_openai_models() -> List[str]:
23
+ """Returns the names of available CLIP models"""
24
+ return list_pretrained_tag_models("openai")
25
+
26
+
27
+ def load_openai_model(
28
+ name: str,
29
+ model_cfg,
30
+ device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
31
+ jit=True,
32
+ cache_dir=os.path.expanduser("~/.cache/clip"),
33
+ enable_fusion: bool = False,
34
+ fusion_type: str = "None",
35
+ ):
36
+ """Load a CLIP model, preserve its text pretrained part, and set in the CLAP model
37
+
38
+ Parameters
39
+ ----------
40
+ name : str
41
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
42
+ device : Union[str, torch.device]
43
+ The device to put the loaded model
44
+ jit : bool
45
+ Whether to load the optimized JIT model (default) or more hackable non-JIT model.
46
+
47
+ Returns
48
+ -------
49
+ model : torch.nn.Module
50
+ The CLAP model
51
+ preprocess : Callable[[PIL.Image], torch.Tensor]
52
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
53
+ """
54
+ if get_pretrained_url(name, "openai"):
55
+ model_path = download_pretrained(
56
+ get_pretrained_url(name, "openai"), root=cache_dir
57
+ )
58
+ elif os.path.isfile(name):
59
+ model_path = name
60
+ else:
61
+ raise RuntimeError(
62
+ f"Model {name} not found; available models = {list_openai_models()}"
63
+ )
64
+
65
+ try:
66
+ # loading JIT archive
67
+ model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
68
+ state_dict = None
69
+ except RuntimeError:
70
+ # loading saved state dict
71
+ if jit:
72
+ warnings.warn(
73
+ f"File {model_path} is not a JIT archive. Loading as a state dict instead"
74
+ )
75
+ jit = False
76
+ state_dict = torch.load(model_path, map_location="cpu")
77
+
78
+ if not jit:
79
+ try:
80
+ model = build_model_from_openai_state_dict(
81
+ state_dict or model.state_dict(), model_cfg, enable_fusion, fusion_type
82
+ ).to(device)
83
+ except KeyError:
84
+ sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
85
+ model = build_model_from_openai_state_dict(
86
+ sd, model_cfg, enable_fusion, fusion_type
87
+ ).to(device)
88
+
89
+ if str(device) == "cpu":
90
+ model.float()
91
+ return model
92
+
93
+ # patch the device names
94
+ device_holder = torch.jit.trace(
95
+ lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
96
+ )
97
+ device_node = [
98
+ n
99
+ for n in device_holder.graph.findAllNodes("prim::Constant")
100
+ if "Device" in repr(n)
101
+ ][-1]
102
+
103
+ def patch_device(module):
104
+ try:
105
+ graphs = [module.graph] if hasattr(module, "graph") else []
106
+ except RuntimeError:
107
+ graphs = []
108
+
109
+ if hasattr(module, "forward1"):
110
+ graphs.append(module.forward1.graph)
111
+
112
+ for graph in graphs:
113
+ for node in graph.findAllNodes("prim::Constant"):
114
+ if "value" in node.attributeNames() and str(node["value"]).startswith(
115
+ "cuda"
116
+ ):
117
+ node.copyAttributes(device_node)
118
+
119
+ model.apply(patch_device)
120
+ patch_device(model.encode_audio)
121
+ patch_device(model.encode_text)
122
+
123
+ # patch dtype to float32 on CPU
124
+ if str(device) == "cpu":
125
+ float_holder = torch.jit.trace(
126
+ lambda: torch.ones([]).float(), example_inputs=[]
127
+ )
128
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
129
+ float_node = float_input.node()
130
+
131
+ def patch_float(module):
132
+ try:
133
+ graphs = [module.graph] if hasattr(module, "graph") else []
134
+ except RuntimeError:
135
+ graphs = []
136
+
137
+ if hasattr(module, "forward1"):
138
+ graphs.append(module.forward1.graph)
139
+
140
+ for graph in graphs:
141
+ for node in graph.findAllNodes("aten::to"):
142
+ inputs = list(node.inputs())
143
+ for i in [
144
+ 1,
145
+ 2,
146
+ ]: # dtype can be the second or third argument to aten::to()
147
+ if inputs[i].node()["value"] == 5:
148
+ inputs[i].node().copyAttributes(float_node)
149
+
150
+ model.apply(patch_float)
151
+ patch_float(model.encode_audio)
152
+ patch_float(model.encode_text)
153
+ model.float()
154
+
155
+ model.audio_branch.audio_length = model.audio_cfg.audio_length
156
+ return model
models/CLAP/open_clip/pann_model.py ADDED
@@ -0,0 +1,704 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
2
+ # Reference from https://github.com/qiuqiangkong/audioset_tagging_cnn
3
+ # Some layers are re-designed for CLAP
4
+ import os
5
+
6
+ os.environ["NUMBA_CACHE_DIR"] = "/tmp/"
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from torchlibrosa.stft import Spectrogram, LogmelFilterBank
12
+ from torchlibrosa.augmentation import SpecAugmentation
13
+
14
+ from .utils import do_mixup, interpolate, pad_framewise_output
15
+ from .feature_fusion import iAFF, AFF, DAF
16
+
17
+
18
+ def init_layer(layer):
19
+ """Initialize a Linear or Convolutional layer."""
20
+ nn.init.xavier_uniform_(layer.weight)
21
+
22
+ if hasattr(layer, "bias"):
23
+ if layer.bias is not None:
24
+ layer.bias.data.fill_(0.0)
25
+
26
+
27
+ def init_bn(bn):
28
+ """Initialize a Batchnorm layer."""
29
+ bn.bias.data.fill_(0.0)
30
+ bn.weight.data.fill_(1.0)
31
+
32
+
33
+ class ConvBlock(nn.Module):
34
+ def __init__(self, in_channels, out_channels):
35
+
36
+ super(ConvBlock, self).__init__()
37
+
38
+ self.conv1 = nn.Conv2d(
39
+ in_channels=in_channels,
40
+ out_channels=out_channels,
41
+ kernel_size=(3, 3),
42
+ stride=(1, 1),
43
+ padding=(1, 1),
44
+ bias=False,
45
+ )
46
+
47
+ self.conv2 = nn.Conv2d(
48
+ in_channels=out_channels,
49
+ out_channels=out_channels,
50
+ kernel_size=(3, 3),
51
+ stride=(1, 1),
52
+ padding=(1, 1),
53
+ bias=False,
54
+ )
55
+
56
+ self.bn1 = nn.BatchNorm2d(out_channels)
57
+ self.bn2 = nn.BatchNorm2d(out_channels)
58
+
59
+ self.init_weight()
60
+
61
+ def init_weight(self):
62
+ init_layer(self.conv1)
63
+ init_layer(self.conv2)
64
+ init_bn(self.bn1)
65
+ init_bn(self.bn2)
66
+
67
+ def forward(self, input, pool_size=(2, 2), pool_type="avg"):
68
+
69
+ x = input
70
+ x = F.relu_(self.bn1(self.conv1(x)))
71
+ x = F.relu_(self.bn2(self.conv2(x)))
72
+ if pool_type == "max":
73
+ x = F.max_pool2d(x, kernel_size=pool_size)
74
+ elif pool_type == "avg":
75
+ x = F.avg_pool2d(x, kernel_size=pool_size)
76
+ elif pool_type == "avg+max":
77
+ x1 = F.avg_pool2d(x, kernel_size=pool_size)
78
+ x2 = F.max_pool2d(x, kernel_size=pool_size)
79
+ x = x1 + x2
80
+ else:
81
+ raise Exception("Incorrect argument!")
82
+
83
+ return x
84
+
85
+
86
+ class ConvBlock5x5(nn.Module):
87
+ def __init__(self, in_channels, out_channels):
88
+
89
+ super(ConvBlock5x5, self).__init__()
90
+
91
+ self.conv1 = nn.Conv2d(
92
+ in_channels=in_channels,
93
+ out_channels=out_channels,
94
+ kernel_size=(5, 5),
95
+ stride=(1, 1),
96
+ padding=(2, 2),
97
+ bias=False,
98
+ )
99
+
100
+ self.bn1 = nn.BatchNorm2d(out_channels)
101
+
102
+ self.init_weight()
103
+
104
+ def init_weight(self):
105
+ init_layer(self.conv1)
106
+ init_bn(self.bn1)
107
+
108
+ def forward(self, input, pool_size=(2, 2), pool_type="avg"):
109
+
110
+ x = input
111
+ x = F.relu_(self.bn1(self.conv1(x)))
112
+ if pool_type == "max":
113
+ x = F.max_pool2d(x, kernel_size=pool_size)
114
+ elif pool_type == "avg":
115
+ x = F.avg_pool2d(x, kernel_size=pool_size)
116
+ elif pool_type == "avg+max":
117
+ x1 = F.avg_pool2d(x, kernel_size=pool_size)
118
+ x2 = F.max_pool2d(x, kernel_size=pool_size)
119
+ x = x1 + x2
120
+ else:
121
+ raise Exception("Incorrect argument!")
122
+
123
+ return x
124
+
125
+
126
+ class AttBlock(nn.Module):
127
+ def __init__(self, n_in, n_out, activation="linear", temperature=1.0):
128
+ super(AttBlock, self).__init__()
129
+
130
+ self.activation = activation
131
+ self.temperature = temperature
132
+ self.att = nn.Conv1d(
133
+ in_channels=n_in,
134
+ out_channels=n_out,
135
+ kernel_size=1,
136
+ stride=1,
137
+ padding=0,
138
+ bias=True,
139
+ )
140
+ self.cla = nn.Conv1d(
141
+ in_channels=n_in,
142
+ out_channels=n_out,
143
+ kernel_size=1,
144
+ stride=1,
145
+ padding=0,
146
+ bias=True,
147
+ )
148
+
149
+ self.bn_att = nn.BatchNorm1d(n_out)
150
+ self.init_weights()
151
+
152
+ def init_weights(self):
153
+ init_layer(self.att)
154
+ init_layer(self.cla)
155
+ init_bn(self.bn_att)
156
+
157
+ def forward(self, x):
158
+ # x: (n_samples, n_in, n_time)
159
+ norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
160
+ cla = self.nonlinear_transform(self.cla(x))
161
+ x = torch.sum(norm_att * cla, dim=2)
162
+ return x, norm_att, cla
163
+
164
+ def nonlinear_transform(self, x):
165
+ if self.activation == "linear":
166
+ return x
167
+ elif self.activation == "sigmoid":
168
+ return torch.sigmoid(x)
169
+
170
+
171
+ class Cnn14(nn.Module):
172
+ def __init__(
173
+ self,
174
+ sample_rate,
175
+ window_size,
176
+ hop_size,
177
+ mel_bins,
178
+ fmin,
179
+ fmax,
180
+ classes_num,
181
+ enable_fusion=False,
182
+ fusion_type="None",
183
+ ):
184
+
185
+ super(Cnn14, self).__init__()
186
+
187
+ window = "hann"
188
+ center = True
189
+ pad_mode = "reflect"
190
+ ref = 1.0
191
+ amin = 1e-10
192
+ top_db = None
193
+
194
+ self.enable_fusion = enable_fusion
195
+ self.fusion_type = fusion_type
196
+
197
+ # Spectrogram extractor
198
+ self.spectrogram_extractor = Spectrogram(
199
+ n_fft=window_size,
200
+ hop_length=hop_size,
201
+ win_length=window_size,
202
+ window=window,
203
+ center=center,
204
+ pad_mode=pad_mode,
205
+ freeze_parameters=True,
206
+ )
207
+
208
+ # Logmel feature extractor
209
+ self.logmel_extractor = LogmelFilterBank(
210
+ sr=sample_rate,
211
+ n_fft=window_size,
212
+ n_mels=mel_bins,
213
+ fmin=fmin,
214
+ fmax=fmax,
215
+ ref=ref,
216
+ amin=amin,
217
+ top_db=top_db,
218
+ freeze_parameters=True,
219
+ )
220
+
221
+ # Spec augmenter
222
+ self.spec_augmenter = SpecAugmentation(
223
+ time_drop_width=64,
224
+ time_stripes_num=2,
225
+ freq_drop_width=8,
226
+ freq_stripes_num=2,
227
+ )
228
+
229
+ self.bn0 = nn.BatchNorm2d(64)
230
+
231
+ if (self.enable_fusion) and (self.fusion_type == "channel_map"):
232
+ self.conv_block1 = ConvBlock(in_channels=4, out_channels=64)
233
+ else:
234
+ self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
235
+ self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
236
+ self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
237
+ self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
238
+ self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
239
+ self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
240
+
241
+ self.fc1 = nn.Linear(2048, 2048, bias=True)
242
+ self.fc_audioset = nn.Linear(2048, classes_num, bias=True)
243
+
244
+ if (self.enable_fusion) and (
245
+ self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]
246
+ ):
247
+ self.mel_conv1d = nn.Sequential(
248
+ nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
249
+ nn.BatchNorm1d(64), # No Relu
250
+ )
251
+ if self.fusion_type == "daf_1d":
252
+ self.fusion_model = DAF()
253
+ elif self.fusion_type == "aff_1d":
254
+ self.fusion_model = AFF(channels=64, type="1D")
255
+ elif self.fusion_type == "iaff_1d":
256
+ self.fusion_model = iAFF(channels=64, type="1D")
257
+
258
+ if (self.enable_fusion) and (
259
+ self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
260
+ ):
261
+ self.mel_conv2d = nn.Sequential(
262
+ nn.Conv2d(1, 64, kernel_size=(5, 5), stride=(6, 2), padding=(2, 2)),
263
+ nn.BatchNorm2d(64),
264
+ nn.ReLU(inplace=True),
265
+ )
266
+
267
+ if self.fusion_type == "daf_2d":
268
+ self.fusion_model = DAF()
269
+ elif self.fusion_type == "aff_2d":
270
+ self.fusion_model = AFF(channels=64, type="2D")
271
+ elif self.fusion_type == "iaff_2d":
272
+ self.fusion_model = iAFF(channels=64, type="2D")
273
+ self.init_weight()
274
+
275
+ def init_weight(self):
276
+ init_bn(self.bn0)
277
+ init_layer(self.fc1)
278
+ init_layer(self.fc_audioset)
279
+
280
+ def forward(self, input, mixup_lambda=None, device=None):
281
+ """
282
+ Input: (batch_size, data_length)"""
283
+
284
+ if self.enable_fusion and input["longer"].sum() == 0:
285
+ # if no audio is longer than 10s, then randomly select one audio to be longer
286
+ input["longer"][torch.randint(0, input["longer"].shape[0], (1,))] = True
287
+
288
+ if not self.enable_fusion:
289
+ x = self.spectrogram_extractor(
290
+ input["waveform"].to(device=device, non_blocking=True)
291
+ ) # (batch_size, 1, time_steps, freq_bins)
292
+ x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
293
+
294
+ x = x.transpose(1, 3)
295
+ x = self.bn0(x)
296
+ x = x.transpose(1, 3)
297
+ else:
298
+ longer_list = input["longer"].to(device=device, non_blocking=True)
299
+ x = input["mel_fusion"].to(device=device, non_blocking=True)
300
+ longer_list_idx = torch.where(longer_list)[0]
301
+ x = x.transpose(1, 3)
302
+ x = self.bn0(x)
303
+ x = x.transpose(1, 3)
304
+ if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]:
305
+ new_x = x[:, 0:1, :, :].clone().contiguous()
306
+ # local processing
307
+ if len(longer_list_idx) > 0:
308
+ fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous()
309
+ FB, FC, FT, FF = fusion_x_local.size()
310
+ fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
311
+ fusion_x_local = torch.permute(
312
+ fusion_x_local, (0, 2, 1)
313
+ ).contiguous()
314
+ fusion_x_local = self.mel_conv1d(fusion_x_local)
315
+ fusion_x_local = fusion_x_local.view(
316
+ FB, FC, FF, fusion_x_local.size(-1)
317
+ )
318
+ fusion_x_local = (
319
+ torch.permute(fusion_x_local, (0, 2, 1, 3))
320
+ .contiguous()
321
+ .flatten(2)
322
+ )
323
+ if fusion_x_local.size(-1) < FT:
324
+ fusion_x_local = torch.cat(
325
+ [
326
+ fusion_x_local,
327
+ torch.zeros(
328
+ (FB, FF, FT - fusion_x_local.size(-1)),
329
+ device=device,
330
+ ),
331
+ ],
332
+ dim=-1,
333
+ )
334
+ else:
335
+ fusion_x_local = fusion_x_local[:, :, :FT]
336
+ # 1D fusion
337
+ new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous()
338
+ new_x[longer_list_idx] = self.fusion_model(
339
+ new_x[longer_list_idx], fusion_x_local
340
+ )
341
+ x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :]
342
+ else:
343
+ x = new_x
344
+ elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]:
345
+ x = x # no change
346
+
347
+ if self.training:
348
+ x = self.spec_augmenter(x)
349
+ # Mixup on spectrogram
350
+ if self.training and mixup_lambda is not None:
351
+ x = do_mixup(x, mixup_lambda)
352
+ if (self.enable_fusion) and (
353
+ self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
354
+ ):
355
+ global_x = x[:, 0:1, :, :]
356
+
357
+ # global processing
358
+ B, C, H, W = global_x.shape
359
+ global_x = self.conv_block1(global_x, pool_size=(2, 2), pool_type="avg")
360
+ if len(longer_list_idx) > 0:
361
+ local_x = x[longer_list_idx, 1:, :, :].contiguous()
362
+ TH = global_x.size(-2)
363
+ # local processing
364
+ B, C, H, W = local_x.shape
365
+ local_x = local_x.view(B * C, 1, H, W)
366
+ local_x = self.mel_conv2d(local_x)
367
+ local_x = local_x.view(
368
+ B, C, local_x.size(1), local_x.size(2), local_x.size(3)
369
+ )
370
+ local_x = local_x.permute((0, 2, 1, 3, 4)).contiguous().flatten(2, 3)
371
+ TB, TC, _, TW = local_x.size()
372
+ if local_x.size(-2) < TH:
373
+ local_x = torch.cat(
374
+ [
375
+ local_x,
376
+ torch.zeros(
377
+ (TB, TC, TH - local_x.size(-2), TW),
378
+ device=global_x.device,
379
+ ),
380
+ ],
381
+ dim=-2,
382
+ )
383
+ else:
384
+ local_x = local_x[:, :, :TH, :]
385
+
386
+ global_x[longer_list_idx] = self.fusion_model(
387
+ global_x[longer_list_idx], local_x
388
+ )
389
+ x = global_x
390
+ else:
391
+ x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
392
+
393
+ x = F.dropout(x, p=0.2, training=self.training)
394
+ x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
395
+ x = F.dropout(x, p=0.2, training=self.training)
396
+ x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
397
+ x = F.dropout(x, p=0.2, training=self.training)
398
+ x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
399
+ x = F.dropout(x, p=0.2, training=self.training)
400
+ x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
401
+ x = F.dropout(x, p=0.2, training=self.training)
402
+ x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
403
+ x = F.dropout(x, p=0.2, training=self.training)
404
+ x = torch.mean(x, dim=3)
405
+
406
+ latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1)
407
+ latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1)
408
+ latent_x = latent_x1 + latent_x2
409
+ latent_x = latent_x.transpose(1, 2)
410
+ latent_x = F.relu_(self.fc1(latent_x))
411
+ latent_output = interpolate(latent_x, 32)
412
+
413
+ (x1, _) = torch.max(x, dim=2)
414
+ x2 = torch.mean(x, dim=2)
415
+ x = x1 + x2
416
+ x = F.dropout(x, p=0.5, training=self.training)
417
+ x = F.relu_(self.fc1(x))
418
+ embedding = F.dropout(x, p=0.5, training=self.training)
419
+ clipwise_output = torch.sigmoid(self.fc_audioset(x))
420
+
421
+ output_dict = {
422
+ "clipwise_output": clipwise_output,
423
+ "embedding": embedding,
424
+ "fine_grained_embedding": latent_output,
425
+ }
426
+ return output_dict
427
+
428
+
429
+ class Cnn6(nn.Module):
430
+ def __init__(
431
+ self,
432
+ sample_rate,
433
+ window_size,
434
+ hop_size,
435
+ mel_bins,
436
+ fmin,
437
+ fmax,
438
+ classes_num,
439
+ enable_fusion=False,
440
+ fusion_type="None",
441
+ ):
442
+
443
+ super(Cnn6, self).__init__()
444
+
445
+ window = "hann"
446
+ center = True
447
+ pad_mode = "reflect"
448
+ ref = 1.0
449
+ amin = 1e-10
450
+ top_db = None
451
+
452
+ self.enable_fusion = enable_fusion
453
+ self.fusion_type = fusion_type
454
+
455
+ # Spectrogram extractor
456
+ self.spectrogram_extractor = Spectrogram(
457
+ n_fft=window_size,
458
+ hop_length=hop_size,
459
+ win_length=window_size,
460
+ window=window,
461
+ center=center,
462
+ pad_mode=pad_mode,
463
+ freeze_parameters=True,
464
+ )
465
+
466
+ # Logmel feature extractor
467
+ self.logmel_extractor = LogmelFilterBank(
468
+ sr=sample_rate,
469
+ n_fft=window_size,
470
+ n_mels=mel_bins,
471
+ fmin=fmin,
472
+ fmax=fmax,
473
+ ref=ref,
474
+ amin=amin,
475
+ top_db=top_db,
476
+ freeze_parameters=True,
477
+ )
478
+
479
+ # Spec augmenter
480
+ self.spec_augmenter = SpecAugmentation(
481
+ time_drop_width=64,
482
+ time_stripes_num=2,
483
+ freq_drop_width=8,
484
+ freq_stripes_num=2,
485
+ )
486
+
487
+ self.bn0 = nn.BatchNorm2d(64)
488
+
489
+ self.conv_block1 = ConvBlock5x5(in_channels=1, out_channels=64)
490
+ self.conv_block2 = ConvBlock5x5(in_channels=64, out_channels=128)
491
+ self.conv_block3 = ConvBlock5x5(in_channels=128, out_channels=256)
492
+ self.conv_block4 = ConvBlock5x5(in_channels=256, out_channels=512)
493
+
494
+ self.fc1 = nn.Linear(512, 512, bias=True)
495
+ self.fc_audioset = nn.Linear(512, classes_num, bias=True)
496
+
497
+ self.init_weight()
498
+
499
+ def init_weight(self):
500
+ init_bn(self.bn0)
501
+ init_layer(self.fc1)
502
+ init_layer(self.fc_audioset)
503
+
504
+ def forward(self, input, mixup_lambda=None, device=None):
505
+ """
506
+ Input: (batch_size, data_length)"""
507
+
508
+ x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
509
+ x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
510
+
511
+ x = x.transpose(1, 3)
512
+ x = self.bn0(x)
513
+ x = x.transpose(1, 3)
514
+
515
+ if self.training:
516
+ x = self.spec_augmenter(x)
517
+
518
+ # Mixup on spectrogram
519
+ if self.training and mixup_lambda is not None:
520
+ x = do_mixup(x, mixup_lambda)
521
+
522
+ x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
523
+ x = F.dropout(x, p=0.2, training=self.training)
524
+ x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
525
+ x = F.dropout(x, p=0.2, training=self.training)
526
+ x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
527
+ x = F.dropout(x, p=0.2, training=self.training)
528
+ x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
529
+ x = F.dropout(x, p=0.2, training=self.training)
530
+ x = torch.mean(x, dim=3)
531
+
532
+ latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1)
533
+ latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1)
534
+ latent_x = latent_x1 + latent_x2
535
+ latent_x = latent_x.transpose(1, 2)
536
+ latent_x = F.relu_(self.fc1(latent_x))
537
+ latent_output = interpolate(latent_x, 16)
538
+
539
+ (x1, _) = torch.max(x, dim=2)
540
+ x2 = torch.mean(x, dim=2)
541
+ x = x1 + x2
542
+ x = F.dropout(x, p=0.5, training=self.training)
543
+ x = F.relu_(self.fc1(x))
544
+ embedding = F.dropout(x, p=0.5, training=self.training)
545
+ clipwise_output = torch.sigmoid(self.fc_audioset(x))
546
+
547
+ output_dict = {
548
+ "clipwise_output": clipwise_output,
549
+ "embedding": embedding,
550
+ "fine_grained_embedding": latent_output,
551
+ }
552
+
553
+ return output_dict
554
+
555
+
556
+ class Cnn10(nn.Module):
557
+ def __init__(
558
+ self,
559
+ sample_rate,
560
+ window_size,
561
+ hop_size,
562
+ mel_bins,
563
+ fmin,
564
+ fmax,
565
+ classes_num,
566
+ enable_fusion=False,
567
+ fusion_type="None",
568
+ ):
569
+
570
+ super(Cnn10, self).__init__()
571
+
572
+ window = "hann"
573
+ center = True
574
+ pad_mode = "reflect"
575
+ ref = 1.0
576
+ amin = 1e-10
577
+ top_db = None
578
+
579
+ self.enable_fusion = enable_fusion
580
+ self.fusion_type = fusion_type
581
+
582
+ # Spectrogram extractor
583
+ self.spectrogram_extractor = Spectrogram(
584
+ n_fft=window_size,
585
+ hop_length=hop_size,
586
+ win_length=window_size,
587
+ window=window,
588
+ center=center,
589
+ pad_mode=pad_mode,
590
+ freeze_parameters=True,
591
+ )
592
+
593
+ # Logmel feature extractor
594
+ self.logmel_extractor = LogmelFilterBank(
595
+ sr=sample_rate,
596
+ n_fft=window_size,
597
+ n_mels=mel_bins,
598
+ fmin=fmin,
599
+ fmax=fmax,
600
+ ref=ref,
601
+ amin=amin,
602
+ top_db=top_db,
603
+ freeze_parameters=True,
604
+ )
605
+
606
+ # Spec augmenter
607
+ self.spec_augmenter = SpecAugmentation(
608
+ time_drop_width=64,
609
+ time_stripes_num=2,
610
+ freq_drop_width=8,
611
+ freq_stripes_num=2,
612
+ )
613
+
614
+ self.bn0 = nn.BatchNorm2d(64)
615
+
616
+ self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
617
+ self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
618
+ self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
619
+ self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
620
+ self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
621
+
622
+ self.fc1 = nn.Linear(1024, 1024, bias=True)
623
+ self.fc_audioset = nn.Linear(1024, classes_num, bias=True)
624
+
625
+ self.init_weight()
626
+
627
+ def init_weight(self):
628
+ init_bn(self.bn0)
629
+ init_layer(self.fc1)
630
+ init_layer(self.fc_audioset)
631
+
632
+ def forward(self, input, mixup_lambda=None, device=None):
633
+ """
634
+ Input: (batch_size, data_length)"""
635
+
636
+ x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
637
+ x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
638
+
639
+ x = x.transpose(1, 3)
640
+ x = self.bn0(x)
641
+ x = x.transpose(1, 3)
642
+
643
+ if self.training:
644
+ x = self.spec_augmenter(x)
645
+
646
+ # Mixup on spectrogram
647
+ if self.training and mixup_lambda is not None:
648
+ x = do_mixup(x, mixup_lambda)
649
+
650
+ x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
651
+ x = F.dropout(x, p=0.2, training=self.training)
652
+ x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
653
+ x = F.dropout(x, p=0.2, training=self.training)
654
+ x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
655
+ x = F.dropout(x, p=0.2, training=self.training)
656
+ x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
657
+ x = F.dropout(x, p=0.2, training=self.training)
658
+ x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
659
+ x = F.dropout(x, p=0.2, training=self.training)
660
+ x = torch.mean(x, dim=3)
661
+
662
+ latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1)
663
+ latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1)
664
+ latent_x = latent_x1 + latent_x2
665
+ latent_x = latent_x.transpose(1, 2)
666
+ latent_x = F.relu_(self.fc1(latent_x))
667
+ latent_output = interpolate(latent_x, 32)
668
+
669
+ (x1, _) = torch.max(x, dim=2)
670
+ x2 = torch.mean(x, dim=2)
671
+ x = x1 + x2
672
+ x = F.dropout(x, p=0.5, training=self.training)
673
+ x = F.relu_(self.fc1(x))
674
+ embedding = F.dropout(x, p=0.5, training=self.training)
675
+ clipwise_output = torch.sigmoid(self.fc_audioset(x))
676
+
677
+ output_dict = {
678
+ "clipwise_output": clipwise_output,
679
+ "embedding": embedding,
680
+ "fine_grained_embedding": latent_output,
681
+ }
682
+
683
+ return output_dict
684
+
685
+
686
+ def create_pann_model(audio_cfg, enable_fusion=False, fusion_type="None"):
687
+ try:
688
+ ModelProto = eval(audio_cfg.model_name)
689
+ model = ModelProto(
690
+ sample_rate=audio_cfg.sample_rate,
691
+ window_size=audio_cfg.window_size,
692
+ hop_size=audio_cfg.hop_size,
693
+ mel_bins=audio_cfg.mel_bins,
694
+ fmin=audio_cfg.fmin,
695
+ fmax=audio_cfg.fmax,
696
+ classes_num=audio_cfg.class_num,
697
+ enable_fusion=enable_fusion,
698
+ fusion_type=fusion_type,
699
+ )
700
+ return model
701
+ except:
702
+ raise RuntimeError(
703
+ f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough."
704
+ )
models/CLAP/open_clip/pretrained.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+
6
+ from tqdm import tqdm
7
+
8
+ _RN50 = dict(
9
+ openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
10
+ yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
11
+ cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
12
+ )
13
+
14
+ _RN50_quickgelu = dict(
15
+ openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
16
+ yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
17
+ cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
18
+ )
19
+
20
+ _RN101 = dict(
21
+ openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
22
+ yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
23
+ )
24
+
25
+ _RN101_quickgelu = dict(
26
+ openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
27
+ yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
28
+ )
29
+
30
+ _RN50x4 = dict(
31
+ openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
32
+ )
33
+
34
+ _RN50x16 = dict(
35
+ openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
36
+ )
37
+
38
+ _RN50x64 = dict(
39
+ openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
40
+ )
41
+
42
+ _VITB32 = dict(
43
+ openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
44
+ laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
45
+ laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
46
+ laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
47
+ )
48
+
49
+ _VITB32_quickgelu = dict(
50
+ openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
51
+ laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
52
+ laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
53
+ laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
54
+ )
55
+
56
+ _VITB16 = dict(
57
+ openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
58
+ )
59
+
60
+ _VITL14 = dict(
61
+ openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
62
+ )
63
+
64
+ _PRETRAINED = {
65
+ "RN50": _RN50,
66
+ "RN50-quickgelu": _RN50_quickgelu,
67
+ "RN101": _RN101,
68
+ "RN101-quickgelu": _RN101_quickgelu,
69
+ "RN50x4": _RN50x4,
70
+ "RN50x16": _RN50x16,
71
+ "ViT-B-32": _VITB32,
72
+ "ViT-B-32-quickgelu": _VITB32_quickgelu,
73
+ "ViT-B-16": _VITB16,
74
+ "ViT-L-14": _VITL14,
75
+ }
76
+
77
+
78
+ def list_pretrained(as_str: bool = False):
79
+ """returns list of pretrained models
80
+ Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
81
+ """
82
+ return [
83
+ ":".join([k, t]) if as_str else (k, t)
84
+ for k in _PRETRAINED.keys()
85
+ for t in _PRETRAINED[k].keys()
86
+ ]
87
+
88
+
89
+ def list_pretrained_tag_models(tag: str):
90
+ """return all models having the specified pretrain tag"""
91
+ models = []
92
+ for k in _PRETRAINED.keys():
93
+ if tag in _PRETRAINED[k]:
94
+ models.append(k)
95
+ return models
96
+
97
+
98
+ def list_pretrained_model_tags(model: str):
99
+ """return all pretrain tags for the specified model architecture"""
100
+ tags = []
101
+ if model in _PRETRAINED:
102
+ tags.extend(_PRETRAINED[model].keys())
103
+ return tags
104
+
105
+
106
+ def get_pretrained_url(model: str, tag: str):
107
+ if model not in _PRETRAINED:
108
+ return ""
109
+ model_pretrained = _PRETRAINED[model]
110
+ if tag not in model_pretrained:
111
+ return ""
112
+ return model_pretrained[tag]
113
+
114
+
115
+ def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")):
116
+ os.makedirs(root, exist_ok=True)
117
+ filename = os.path.basename(url)
118
+
119
+ if "openaipublic" in url:
120
+ expected_sha256 = url.split("/")[-2]
121
+ else:
122
+ expected_sha256 = ""
123
+
124
+ download_target = os.path.join(root, filename)
125
+
126
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
127
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
128
+
129
+ if os.path.isfile(download_target):
130
+ if expected_sha256:
131
+ if (
132
+ hashlib.sha256(open(download_target, "rb").read()).hexdigest()
133
+ == expected_sha256
134
+ ):
135
+ return download_target
136
+ else:
137
+ warnings.warn(
138
+ f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
139
+ )
140
+ else:
141
+ return download_target
142
+
143
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
144
+ with tqdm(
145
+ total=int(source.info().get("Content-Length")),
146
+ ncols=80,
147
+ unit="iB",
148
+ unit_scale=True,
149
+ ) as loop:
150
+ while True:
151
+ buffer = source.read(8192)
152
+ if not buffer:
153
+ break
154
+
155
+ output.write(buffer)
156
+ loop.update(len(buffer))
157
+
158
+ if (
159
+ expected_sha256
160
+ and hashlib.sha256(open(download_target, "rb").read()).hexdigest()
161
+ != expected_sha256
162
+ ):
163
+ raise RuntimeError(
164
+ f"Model has been downloaded but the SHA256 checksum does not not match"
165
+ )
166
+
167
+ return download_target
models/CLAP/open_clip/timm_model.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ timm model adapter
2
+
3
+ Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
4
+ """
5
+ from collections import OrderedDict
6
+
7
+ import torch.nn as nn
8
+
9
+ try:
10
+ import timm
11
+ from timm.models.layers import Mlp, to_2tuple
12
+ from timm.models.layers.attention_pool2d import RotAttentionPool2d
13
+ from timm.models.layers.attention_pool2d import (
14
+ AttentionPool2d as AbsAttentionPool2d,
15
+ )
16
+ except ImportError as e:
17
+ timm = None
18
+
19
+ from .utils import freeze_batch_norm_2d
20
+
21
+
22
+ class TimmModel(nn.Module):
23
+ """timm model adapter
24
+ # FIXME this adapter is a work in progress, may change in ways that break weight compat
25
+ """
26
+
27
+ def __init__(
28
+ self,
29
+ model_name,
30
+ embed_dim,
31
+ image_size=224,
32
+ pool="avg",
33
+ proj="linear",
34
+ drop=0.0,
35
+ pretrained=False,
36
+ ):
37
+ super().__init__()
38
+ if timm is None:
39
+ raise RuntimeError("Please `pip install timm` to use timm models.")
40
+
41
+ self.image_size = to_2tuple(image_size)
42
+ self.trunk = timm.create_model(model_name, pretrained=pretrained)
43
+ feat_size = self.trunk.default_cfg.get("pool_size", None)
44
+ feature_ndim = 1 if not feat_size else 2
45
+ if pool in ("abs_attn", "rot_attn"):
46
+ assert feature_ndim == 2
47
+ # if attn pooling used, remove both classifier and default pool
48
+ self.trunk.reset_classifier(0, global_pool="")
49
+ else:
50
+ # reset global pool if pool config set, otherwise leave as network default
51
+ reset_kwargs = dict(global_pool=pool) if pool else {}
52
+ self.trunk.reset_classifier(0, **reset_kwargs)
53
+ prev_chs = self.trunk.num_features
54
+
55
+ head_layers = OrderedDict()
56
+ if pool == "abs_attn":
57
+ head_layers["pool"] = AbsAttentionPool2d(
58
+ prev_chs, feat_size=feat_size, out_features=embed_dim
59
+ )
60
+ prev_chs = embed_dim
61
+ elif pool == "rot_attn":
62
+ head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
63
+ prev_chs = embed_dim
64
+ else:
65
+ assert proj, "projection layer needed if non-attention pooling is used."
66
+
67
+ # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
68
+ if proj == "linear":
69
+ head_layers["drop"] = nn.Dropout(drop)
70
+ head_layers["proj"] = nn.Linear(prev_chs, embed_dim)
71
+ elif proj == "mlp":
72
+ head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop)
73
+
74
+ self.head = nn.Sequential(head_layers)
75
+
76
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
77
+ """lock modules
78
+ Args:
79
+ unlocked_groups (int): leave last n layer groups unlocked (default: 0)
80
+ """
81
+ if not unlocked_groups:
82
+ # lock full model
83
+ for param in self.trunk.parameters():
84
+ param.requires_grad = False
85
+ if freeze_bn_stats:
86
+ freeze_batch_norm_2d(self.trunk)
87
+ else:
88
+ # NOTE: partial freeze requires latest timm (master) branch and is subject to change
89
+ try:
90
+ # FIXME import here until API stable and in an official release
91
+ from timm.models.helpers import group_parameters, group_modules
92
+ except ImportError:
93
+ raise RuntimeError(
94
+ "Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`"
95
+ )
96
+ matcher = self.trunk.group_matcher()
97
+ gparams = group_parameters(self.trunk, matcher)
98
+ max_layer_id = max(gparams.keys())
99
+ max_layer_id = max_layer_id - unlocked_groups
100
+ for group_idx in range(max_layer_id + 1):
101
+ group = gparams[group_idx]
102
+ for param in group:
103
+ self.trunk.get_parameter(param).requires_grad = False
104
+ if freeze_bn_stats:
105
+ gmodules = group_modules(self.trunk, matcher, reverse=True)
106
+ gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
107
+ freeze_batch_norm_2d(self.trunk, gmodules)
108
+
109
+ def forward(self, x):
110
+ x = self.trunk(x)
111
+ x = self.head(x)
112
+ return x
models/CLAP/open_clip/tokenizer.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLIP tokenizer
2
+
3
+ Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
+ """
5
+ import gzip
6
+ import html
7
+ import os
8
+ from functools import lru_cache
9
+ from typing import Union, List
10
+
11
+ import ftfy
12
+ import regex as re
13
+ import torch
14
+
15
+
16
+ @lru_cache()
17
+ def default_bpe():
18
+ return os.path.join(
19
+ os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz"
20
+ )
21
+
22
+
23
+ @lru_cache()
24
+ def bytes_to_unicode():
25
+ """
26
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
27
+ The reversible bpe codes work on unicode strings.
28
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
29
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
30
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
31
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
32
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
33
+ """
34
+ bs = (
35
+ list(range(ord("!"), ord("~") + 1))
36
+ + list(range(ord("¡"), ord("¬") + 1))
37
+ + list(range(ord("®"), ord("ÿ") + 1))
38
+ )
39
+ cs = bs[:]
40
+ n = 0
41
+ for b in range(2**8):
42
+ if b not in bs:
43
+ bs.append(b)
44
+ cs.append(2**8 + n)
45
+ n += 1
46
+ cs = [chr(n) for n in cs]
47
+ return dict(zip(bs, cs))
48
+
49
+
50
+ def get_pairs(word):
51
+ """Return set of symbol pairs in a word.
52
+ Word is represented as tuple of symbols (symbols being variable-length strings).
53
+ """
54
+ pairs = set()
55
+ prev_char = word[0]
56
+ for char in word[1:]:
57
+ pairs.add((prev_char, char))
58
+ prev_char = char
59
+ return pairs
60
+
61
+
62
+ def basic_clean(text):
63
+ text = ftfy.fix_text(text)
64
+ text = html.unescape(html.unescape(text))
65
+ return text.strip()
66
+
67
+
68
+ def whitespace_clean(text):
69
+ text = re.sub(r"\s+", " ", text)
70
+ text = text.strip()
71
+ return text
72
+
73
+
74
+ class SimpleTokenizer(object):
75
+ def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
76
+ self.byte_encoder = bytes_to_unicode()
77
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
78
+ merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
79
+ merges = merges[1 : 49152 - 256 - 2 + 1]
80
+ merges = [tuple(merge.split()) for merge in merges]
81
+ vocab = list(bytes_to_unicode().values())
82
+ vocab = vocab + [v + "</w>" for v in vocab]
83
+ for merge in merges:
84
+ vocab.append("".join(merge))
85
+ if not special_tokens:
86
+ special_tokens = ["<start_of_text>", "<end_of_text>"]
87
+ else:
88
+ special_tokens = ["<start_of_text>", "<end_of_text>"] + special_tokens
89
+ vocab.extend(special_tokens)
90
+ self.encoder = dict(zip(vocab, range(len(vocab))))
91
+ self.decoder = {v: k for k, v in self.encoder.items()}
92
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
93
+ self.cache = {t: t for t in special_tokens}
94
+ special = "|".join(special_tokens)
95
+ self.pat = re.compile(
96
+ special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
97
+ re.IGNORECASE,
98
+ )
99
+
100
+ self.vocab_size = len(self.encoder)
101
+ self.all_special_ids = [self.encoder[t] for t in special_tokens]
102
+
103
+ def bpe(self, token):
104
+ if token in self.cache:
105
+ return self.cache[token]
106
+ word = tuple(token[:-1]) + (token[-1] + "</w>",)
107
+ pairs = get_pairs(word)
108
+
109
+ if not pairs:
110
+ return token + "</w>"
111
+
112
+ while True:
113
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
114
+ if bigram not in self.bpe_ranks:
115
+ break
116
+ first, second = bigram
117
+ new_word = []
118
+ i = 0
119
+ while i < len(word):
120
+ try:
121
+ j = word.index(first, i)
122
+ new_word.extend(word[i:j])
123
+ i = j
124
+ except:
125
+ new_word.extend(word[i:])
126
+ break
127
+
128
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
129
+ new_word.append(first + second)
130
+ i += 2
131
+ else:
132
+ new_word.append(word[i])
133
+ i += 1
134
+ new_word = tuple(new_word)
135
+ word = new_word
136
+ if len(word) == 1:
137
+ break
138
+ else:
139
+ pairs = get_pairs(word)
140
+ word = " ".join(word)
141
+ self.cache[token] = word
142
+ return word
143
+
144
+ def encode(self, text):
145
+ bpe_tokens = []
146
+ text = whitespace_clean(basic_clean(text)).lower()
147
+ for token in re.findall(self.pat, text):
148
+ token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
149
+ bpe_tokens.extend(
150
+ self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
151
+ )
152
+ return bpe_tokens
153
+
154
+ def decode(self, tokens):
155
+ text = "".join([self.decoder[token] for token in tokens])
156
+ text = (
157
+ bytearray([self.byte_decoder[c] for c in text])
158
+ .decode("utf-8", errors="replace")
159
+ .replace("</w>", " ")
160
+ )
161
+ return text
162
+
163
+
164
+ _tokenizer = SimpleTokenizer()
165
+
166
+
167
+ def tokenize(
168
+ texts: Union[str, List[str]], context_length: int = 77
169
+ ) -> torch.LongTensor:
170
+ """
171
+ Returns the tokenized representation of given input string(s)
172
+
173
+ Parameters
174
+ ----------
175
+ texts : Union[str, List[str]]
176
+ An input string or a list of input strings to tokenize
177
+ context_length : int
178
+ The context length to use; all CLIP models use 77 as the context length
179
+
180
+ Returns
181
+ -------
182
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
183
+ """
184
+ if isinstance(texts, str):
185
+ texts = [texts]
186
+
187
+ sot_token = _tokenizer.encoder["<start_of_text>"]
188
+ eot_token = _tokenizer.encoder["<end_of_text>"]
189
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
190
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
191
+
192
+ for i, tokens in enumerate(all_tokens):
193
+ if len(tokens) > context_length:
194
+ tokens = tokens[:context_length] # Truncate
195
+ result[i, : len(tokens)] = torch.tensor(tokens)
196
+
197
+ return result
models/CLAP/open_clip/transform.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torchvision.transforms import (
2
+ Normalize,
3
+ Compose,
4
+ RandomResizedCrop,
5
+ InterpolationMode,
6
+ ToTensor,
7
+ Resize,
8
+ CenterCrop,
9
+ )
10
+
11
+
12
+ def _convert_to_rgb(image):
13
+ return image.convert("RGB")
14
+
15
+
16
+ def image_transform(
17
+ image_size: int,
18
+ is_train: bool,
19
+ mean=(0.48145466, 0.4578275, 0.40821073),
20
+ std=(0.26862954, 0.26130258, 0.27577711),
21
+ ):
22
+ normalize = Normalize(mean=mean, std=std)
23
+ if is_train:
24
+ return Compose(
25
+ [
26
+ RandomResizedCrop(
27
+ image_size,
28
+ scale=(0.9, 1.0),
29
+ interpolation=InterpolationMode.BICUBIC,
30
+ ),
31
+ _convert_to_rgb,
32
+ ToTensor(),
33
+ normalize,
34
+ ]
35
+ )
36
+ else:
37
+ return Compose(
38
+ [
39
+ Resize(image_size, interpolation=InterpolationMode.BICUBIC),
40
+ CenterCrop(image_size),
41
+ _convert_to_rgb,
42
+ ToTensor(),
43
+ normalize,
44
+ ]
45
+ )
models/CLAP/open_clip/utils.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from torch import nn as nn
4
+ from torchvision.ops.misc import FrozenBatchNorm2d
5
+ import logging
6
+ import h5py
7
+ from tqdm import tqdm
8
+ import random
9
+ import json
10
+ import os
11
+ import pathlib
12
+
13
+ # TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later.
14
+ dataset_split = {
15
+ "audiocaps": ["train", "valid", "test"],
16
+ "audioset": ["balanced_train", "unbalanced_train", "eval"],
17
+ "BBCSoundEffects": ["train", "test"],
18
+ "Clotho": ["train", "test", "valid"],
19
+ "free_to_use_sounds": ["train", "test"],
20
+ "paramount_motion": ["train", "test"],
21
+ "sonniss_game_effects": ["train", "test"],
22
+ "wesoundeffects": ["train", "test"],
23
+ "MACS": ["train", "test"],
24
+ "freesound": ["train", "test"],
25
+ "FSD50K": ["train", "test", "valid"],
26
+ "fsd50k_class_label": ["train", "test", "valid"],
27
+ "esc50": ["train", "test"],
28
+ "audiostock": ["train", "test"],
29
+ "freesound_no_overlap_noesc50": ["train", "test"],
30
+ "epidemic_sound_effects": ["train", "test"],
31
+ "VGGSound": ["train", "test"],
32
+ "urbansound8k_class_label": ["train", "test"],
33
+ "audioset_t5": ["balanced_train", "unbalanced_train", "eval"],
34
+ "epidemic_sound_effects_t5": ["train", "test"],
35
+ "WavText5K": ["train", "test"],
36
+ "esc50_no_overlap": ["train", "test"],
37
+ "usd8k_no_overlap": ["train", "test"],
38
+ "fsd50k_200_class_label": ["train", "test", "valid"],
39
+ }
40
+
41
+
42
+ def freeze_batch_norm_2d(module, module_match={}, name=""):
43
+ """
44
+ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
45
+ itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
46
+ returned. Otherwise, the module is walked recursively and submodules are converted in place.
47
+
48
+ Args:
49
+ module (torch.nn.Module): Any PyTorch module.
50
+ module_match (dict): Dictionary of full module names to freeze (all if empty)
51
+ name (str): Full module name (prefix)
52
+
53
+ Returns:
54
+ torch.nn.Module: Resulting module
55
+
56
+ Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
57
+ """
58
+ res = module
59
+ is_match = True
60
+ if module_match:
61
+ is_match = name in module_match
62
+ if is_match and isinstance(
63
+ module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
64
+ ):
65
+ res = FrozenBatchNorm2d(module.num_features)
66
+ res.num_features = module.num_features
67
+ res.affine = module.affine
68
+ if module.affine:
69
+ res.weight.data = module.weight.data.clone().detach()
70
+ res.bias.data = module.bias.data.clone().detach()
71
+ res.running_mean.data = module.running_mean.data
72
+ res.running_var.data = module.running_var.data
73
+ res.eps = module.eps
74
+ else:
75
+ for child_name, child in module.named_children():
76
+ full_child_name = ".".join([name, child_name]) if name else child_name
77
+ new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
78
+ if new_child is not child:
79
+ res.add_module(child_name, new_child)
80
+ return res
81
+
82
+
83
+ def exist(dataset_name, dataset_type):
84
+ """
85
+ Check if dataset exists
86
+ """
87
+ if dataset_type in dataset_split[dataset_name]:
88
+ return True
89
+ else:
90
+ return False
91
+
92
+
93
+ def get_tar_path_from_dataset_name(
94
+ dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None
95
+ ):
96
+ """
97
+ Get tar path from dataset name and type
98
+ """
99
+ output = []
100
+ for n in dataset_names:
101
+ if full_dataset is not None and n in full_dataset:
102
+ current_dataset_types = dataset_split[n]
103
+ else:
104
+ current_dataset_types = dataset_types
105
+ for s in current_dataset_types:
106
+ tmp = []
107
+ if islocal:
108
+ sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json"
109
+ if not os.path.exists(sizefilepath_):
110
+ sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
111
+ else:
112
+ sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
113
+ if not os.path.exists(sizefilepath_):
114
+ continue
115
+ sizes = json.load(open(sizefilepath_, "r"))
116
+ for k in sizes.keys():
117
+ if islocal:
118
+ tmp.append(f"{dataset_path}/{n}/{s}/{k}")
119
+ else:
120
+ tmp.append(
121
+ f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -"
122
+ )
123
+ if proportion != 1:
124
+ tmp = random.sample(tmp, int(proportion * len(tmp)))
125
+ output.append(tmp)
126
+ return sum(output, [])
127
+
128
+
129
+ def get_tar_path_from_txts(txt_path, islocal, proportion=1):
130
+ """
131
+ Get tar path from txt path
132
+ """
133
+ if isinstance(txt_path, (list, tuple)):
134
+ return sum(
135
+ [
136
+ get_tar_path_from_txts(
137
+ txt_path[i], islocal=islocal, proportion=proportion
138
+ )
139
+ for i in range(len(txt_path))
140
+ ],
141
+ [],
142
+ )
143
+ if isinstance(txt_path, str):
144
+ with open(txt_path) as f:
145
+ lines = f.readlines()
146
+ if islocal:
147
+ lines = [
148
+ lines[i]
149
+ .split("\n")[0]
150
+ .replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/")
151
+ for i in range(len(lines))
152
+ ]
153
+ else:
154
+ lines = [
155
+ lines[i].split("\n")[0].replace(".tar", ".tar -")
156
+ for i in range(len(lines))
157
+ ]
158
+ if proportion != 1:
159
+ print("Sampling tars with proportion of {}".format(proportion))
160
+ lines = random.sample(lines, int(proportion * len(lines)))
161
+ return lines
162
+
163
+
164
+ def get_mix_lambda(mixup_alpha, batch_size):
165
+ mixup_lambdas = [
166
+ np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)
167
+ ]
168
+ return np.array(mixup_lambdas).astype(np.float32)
169
+
170
+
171
+ def do_mixup(x, mixup_lambda):
172
+ """
173
+ Args:
174
+ x: (batch_size , ...)
175
+ mixup_lambda: (batch_size,)
176
+ Returns:
177
+ out: (batch_size, ...)
178
+ """
179
+ out = (
180
+ x.transpose(0, -1) * mixup_lambda
181
+ + torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
182
+ ).transpose(0, -1)
183
+ return out
184
+
185
+
186
+ def interpolate(x, ratio):
187
+ """Interpolate data in time domain. This is used to compensate the
188
+ resolution reduction in downsampling of a CNN.
189
+
190
+ Args:
191
+ x: (batch_size, time_steps, classes_num)
192
+ ratio: int, ratio to interpolate
193
+ Returns:
194
+ upsampled: (batch_size, time_steps * ratio, classes_num)
195
+ """
196
+ (batch_size, time_steps, classes_num) = x.shape
197
+ upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
198
+ upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
199
+ return upsampled
200
+
201
+
202
+ def pad_framewise_output(framewise_output, frames_num):
203
+ """Pad framewise_output to the same length as input frames. The pad value
204
+ is the same as the value of the last frame.
205
+ Args:
206
+ framewise_output: (batch_size, frames_num, classes_num)
207
+ frames_num: int, number of frames to pad
208
+ Outputs:
209
+ output: (batch_size, frames_num, classes_num)
210
+ """
211
+ pad = framewise_output[:, -1:, :].repeat(
212
+ 1, frames_num - framewise_output.shape[1], 1
213
+ )
214
+ """tensor for padding"""
215
+
216
+ output = torch.cat((framewise_output, pad), dim=1)
217
+ """(batch_size, frames_num, classes_num)"""
218
+
219
+
220
+ def process_ipc(index_path, classes_num, filename):
221
+ # load data
222
+ logging.info("Load Data...............")
223
+ ipc = [[] for _ in range(classes_num)]
224
+ with h5py.File(index_path, "r") as f:
225
+ for i in tqdm(range(len(f["target"]))):
226
+ t_class = np.where(f["target"][i])[0]
227
+ for t in t_class:
228
+ ipc[t].append(i)
229
+ print(ipc)
230
+ np.save(filename, ipc)
231
+ logging.info("Load Data Succeed...............")
232
+
233
+
234
+ def save_to_dict(s, o_={}):
235
+ sp = s.split(": ")
236
+ o_.update({sp[0]: float(sp[1])})
237
+ return o_
238
+
239
+
240
+ def get_data_from_log(txt_path):
241
+ """
242
+ Output dictionary from out.txt log file
243
+ """
244
+ with open(txt_path) as f:
245
+ lines = f.readlines()
246
+ val_data = {}
247
+ train_data = {}
248
+ train_losses = []
249
+ train_losses_epoch = []
250
+ for i in range(len(lines)):
251
+ if "| INFO |" in lines[i]:
252
+ if "Eval Epoch" in lines[i]:
253
+ if "val_loss" in lines[i]:
254
+ # float(regex.sub("", lines[310].split(" ")[-1]).replace(" ", ""))
255
+ line = lines[i].split("Eval Epoch: ")[-1]
256
+ num_epoch = int(line.split(" ")[0].split(" ")[0])
257
+ d = {
258
+ line.split(" ")[0]
259
+ .split(" ")[1]
260
+ .replace(":", ""): float(line.split(" ")[0].split(" ")[-1])
261
+ }
262
+ for i in range(1, len(line.split(" "))):
263
+ d = save_to_dict(line.split(" ")[i], d)
264
+ val_data[num_epoch] = d
265
+ elif "Train Epoch" in lines[i]:
266
+ num_epoch = int(lines[i].split("Train Epoch: ")[1][0])
267
+ loss = float(lines[i].split("Loss: ")[-1].split(" (")[0])
268
+ train_losses.append(loss)
269
+ train_losses_epoch.append(num_epoch)
270
+ for i in range(len(train_losses)):
271
+ train_data[i] = {
272
+ "num_epoch": train_losses_epoch[i],
273
+ "train_loss": train_losses[i],
274
+ }
275
+ return train_data, val_data
276
+
277
+
278
+ def save_p(obj, filename):
279
+ import pickle
280
+
281
+ try:
282
+ from deepdiff import DeepDiff
283
+ except:
284
+ os.system("pip install deepdiff")
285
+ from deepdiff import DeepDiff
286
+ with open(filename, "wb") as file:
287
+ pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) # highest protocol
288
+ with open(filename, "rb") as file:
289
+ z = pickle.load(file)
290
+ assert (
291
+ DeepDiff(obj, z, ignore_string_case=True) == {}
292
+ ), "there is something wrong with the saving process"
293
+ return
294
+
295
+
296
+ def load_p(filename):
297
+ import pickle
298
+
299
+ with open(filename, "rb") as file:
300
+ z = pickle.load(file)
301
+ return z
302
+
303
+
304
+ def save_json(data, name="data.json"):
305
+ import json
306
+
307
+ with open(name, "w") as fp:
308
+ json.dump(data, fp)
309
+ return
310
+
311
+
312
+ def load_json(name):
313
+ import json
314
+
315
+ with open(name, "r") as fp:
316
+ data = json.load(fp)
317
+ return data
318
+
319
+
320
+ from multiprocessing import Process, Manager
321
+ from multiprocessing import Process, Value, Array
322
+ from ctypes import c_wchar
323
+
324
+
325
+ def load_class_label(path):
326
+ # https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
327
+ # https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
328
+ out = None
329
+ if path is not None:
330
+ if pathlib.Path(path).suffix in [".pkl", ".pickle"]:
331
+ out = load_p(path)
332
+ elif pathlib.Path(path).suffix in [".json", ".txt"]:
333
+ out = load_json(path)
334
+ elif pathlib.Path(path).suffix in [".npy", ".npz"]:
335
+ out = np.load(path)
336
+ elif pathlib.Path(path).suffix in [".csv"]:
337
+ import pandas as pd
338
+
339
+ out = pd.read_csv(path)
340
+ return out
341
+ # if out is None:
342
+ # return None
343
+ # else:
344
+ # key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False)
345
+ # val = Array('i', out.values(), lock=False)
346
+ # return (key, val)
347
+
348
+
349
+ from torch import optim
350
+
351
+
352
+ def get_optimizer(params, lr, betas, eps, momentum, optimizer_name):
353
+ if optimizer_name.lower() == "adamw":
354
+ optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps)
355
+ elif optimizer_name.lower() == "sgd":
356
+ optimizer = optim.SGD(params, lr=lr, momentum=momentum)
357
+ elif optimizer_name.lower() == "adam":
358
+ optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps)
359
+ else:
360
+ raise ValueError("optimizer name is not correct")
361
+ return optimizer