File size: 5,620 Bytes
8811068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import numpy as np
import requests
import yaml
import pyloudnorm as pyln
from scipy.io.wavfile import write
import torchaudio
from retrying import retry
from utils import get_service_port, get_service_url
 

os.environ['OPENBLAS_NUM_THREADS'] = '1'
SAMPLE_RATE = 32000


with open('config.yaml', 'r') as file:
    config = yaml.safe_load(file)
    service_port = get_service_port()
    localhost_addr = get_service_url()
    enable_sr = config['Speech-Restoration']['Enable']

def LOUDNESS_NORM(audio, sr=32000, volumn=-25):
    # peak normalize audio to -1 dB
    peak_normalized_audio = pyln.normalize.peak(audio, -10.0)
    # measure the loudness first 
    meter = pyln.Meter(sr) # create BS.1770 meter
    loudness = meter.integrated_loudness(peak_normalized_audio)
    # loudness normalize audio to -12 dB LUFS
    normalized_audio = pyln.normalize.loudness(peak_normalized_audio, loudness, volumn)
    return normalized_audio
    

def WRITE_AUDIO(wav, name=None, sr=SAMPLE_RATE):
    """
    function: write audio numpy to .wav file
    @params:
        wav: np.array [samples]
    """   
    if name is None:
        name = 'output.wav' 
    
    if len(wav.shape) > 1:
        wav = wav[0]

    # declipping
    
    max_value = np.max(np.abs(wav))
    if max_value > 1:
        wav *= 0.9 / max_value
    
    # write audio
    write(name, sr, np.round(wav*32767).astype(np.int16))


def READ_AUDIO_NUMPY(wav, sr=SAMPLE_RATE):
    """
    function: read audio numpy 
    return: np.array [samples]
    """
    waveform, sample_rate = torchaudio.load(wav)

    if sample_rate != sr:
        waveform = torchaudio.functional.resample(waveform, orig_freq=sample_rate, new_freq=sr)
    
    wav_numpy = waveform[0].numpy()

    return wav_numpy


def MIX(wavs=[['1.wav', 0.], ['2.wav', 10.]], out_wav='out.wav', sr=SAMPLE_RATE):
    """
    wavs:[[wav_name, absolute_offset], ...]
    """

    max_length = max([int(wav[1]*sr + len(READ_AUDIO_NUMPY(wav[0]))) for wav in wavs])
    template_wav = np.zeros(max_length)

    for wav in wavs:
        cur_name, cur_offset = wav
        cur_wav = READ_AUDIO_NUMPY(cur_name)
        cur_len = len(cur_wav)
        cur_offset = int(cur_offset * sr)
        
        # mix
        template_wav[cur_offset:cur_offset+cur_len] += cur_wav
    
    WRITE_AUDIO(template_wav, name=out_wav)


def CAT(wavs, out_wav='out.wav'):
    """
    wavs: List of wav file ['1.wav', '2.wav', ...]
    """
    wav_num = len(wavs)

    segment0 = READ_AUDIO_NUMPY(wavs[0])

    cat_wav = segment0

    if wav_num > 1:
        for i in range(1, wav_num):
            next_wav = READ_AUDIO_NUMPY(wavs[i])
            cat_wav = np.concatenate((cat_wav, next_wav), axis=-1)

    WRITE_AUDIO(cat_wav, name=out_wav)


def COMPUTE_LEN(wav):
    wav= READ_AUDIO_NUMPY(wav)
    return len(wav) / 32000


@retry(stop_max_attempt_number=5, wait_fixed=2000)
def TTM(text, length=10, volume=-28, out_wav='out.wav'):
    url = f'http://{localhost_addr}:{service_port}/generate_music'
    data = {
        'text': f'{text}',
        'length': f'{length}',
        'volume': f'{volume}',
        'output_wav': f'{out_wav}',
    }
    
    response = requests.post(url, json=data)

    if response.status_code == 200:
        print('Success:', response.json()['message'])
    else:
        print('Error:', response.json()['API error'])
        raise RuntimeError(response.json()['API error'])

@retry(stop_max_attempt_number=5, wait_fixed=2000)
def TTA(text, length=5, volume=-35, out_wav='out.wav'):
    url = f'http://{localhost_addr}:{service_port}/generate_audio'
    data = {
        'text': f'{text}',
        'length': f'{length}',
        'volume': f'{volume}',
        'output_wav': f'{out_wav}',
    }

    response = requests.post(url, json=data)

    if response.status_code == 200:
        print('Success:', response.json()['message'])
    else:
        print('Error:', response.json()['API error'])
        raise RuntimeError(response.json()['API error'])


@retry(stop_max_attempt_number=5, wait_fixed=2000)
def TTS(text, volume=-20, out_wav='out.wav', enhanced=enable_sr, speaker_id='', speaker_npz=''):
    url = f'http://{localhost_addr}:{service_port}/generate_speech'
    data = {
    'text': f'{text}',
    'speaker_id': f'{speaker_id}',
    'speaker_npz': f'{speaker_npz}',
    'volume': f'{volume}',
    'output_wav': f'{out_wav}',
    }

    response = requests.post(url, json=data)

    if response.status_code == 200:
        print('Success:', response.json()['message'])
    else:
        print('Error:', response.json()['API error'])
        raise RuntimeError(response.json()['API error'])

    if enhanced:
        SR(processfile=out_wav)


@retry(stop_max_attempt_number=5, wait_fixed=2000)
def SR(processfile):
    url = f'http://{localhost_addr}:{service_port}/fix_audio'
    data = {'processfile': f'{processfile}'}

    response = requests.post(url, json=data)

    if response.status_code == 200:
        print('Success:', response.json()['message'])
    else:
        print('Error:', response.json()['API error'])
        raise RuntimeError(response.json()['API error'])


@retry(stop_max_attempt_number=5, wait_fixed=2000)
def VP(wav_path, out_dir):
    url = f'http://{localhost_addr}:{service_port}/parse_voice'
    data = {
        'wav_path': f'{wav_path}', 
        'out_dir':f'{out_dir}'
    }

    response = requests.post(url, json=data)

    if response.status_code == 200:
        print('Success:', response.json()['message'])
    else:
        print('Error:', response.json()['API error'])
        raise RuntimeError(response.json()['API error'])