Spaces:
Runtime error
Runtime error
File size: 15,962 Bytes
66051a3 d646d8b 66051a3 38b99ff 66051a3 38b99ff 5c7399e 38b99ff 66051a3 38b99ff 5c7399e 38b99ff 66051a3 38b99ff 66051a3 38b99ff 66051a3 38b99ff 66051a3 38b99ff 66051a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import argparse
from concurrent.futures import ProcessPoolExecutor
import os
from pathlib import Path
import subprocess as sp
from tempfile import NamedTemporaryFile
import time
import typing as tp
import warnings
import torch
import gradio as gr
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen, MultiBandDiffusion
MODEL = None # Last used model
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '')
print(IS_BATCHED)
MAX_BATCH_SIZE = 12
BATCHED_DURATION = 15
INTERRUPTING = False
MBD = None
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform
_old_call = sp.call
def _call_nostderr(*args, **kwargs):
# Avoid ffmpeg vomiting on the logs.
kwargs['stderr'] = sp.DEVNULL
kwargs['stdout'] = sp.DEVNULL
_old_call(*args, **kwargs)
sp.call = _call_nostderr
# Preallocating the pool of processes.
pool = ProcessPoolExecutor(4)
pool.__enter__()
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
file_cleaner = FileCleaner()
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version='facebook/musicgen-melody'):
global MODEL
print("Loading model", version)
if MODEL is None or MODEL.name != version:
MODEL = MusicGen.get_pretrained(version)
def load_diffusion():
global MBD
if MBD is None:
print("loading MBD")
MBD = MultiBandDiffusion.get_mbd_musicgen()
def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs):
MODEL.set_generation_params(duration=duration, **gen_kwargs)
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies])
be = time.time()
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t()
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., :int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
if any(m is not None for m in processed_melodies):
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=progress,
return_tokens=USE_DIFFUSION
)
else:
outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION)
if USE_DIFFUSION:
outputs_diffusion = MBD.tokens_to_wav(outputs[1])
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0)
outputs = outputs.detach().cpu().float()
pending_videos = []
out_wavs = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False)
pending_videos.append(pool.submit(make_waveform, file.name))
out_wavs.append(file.name)
file_cleaner.add(file.name)
out_videos = [pending_video.result() for pending_video in pending_videos]
for video in out_videos:
file_cleaner.add(video)
print("batch finished", len(texts), time.time() - be)
print("Tempfiles currently stored: ", len(file_cleaner.files))
return out_videos, out_wavs
def predict_batched(texts, melodies):
max_text_length = 512
texts = [text[:max_text_length] for text in texts]
load_model('facebook/musicgen-melody')
res = _do_predictions(texts, melodies, BATCHED_DURATION)
return res
def predict_full(model, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()):
global INTERRUPTING
global USE_DIFFUSION
INTERRUPTING = False
if temperature < 0:
raise gr.Error("Temperature must be >= 0.")
if topk < 0:
raise gr.Error("Topk must be non-negative.")
if topp < 0:
raise gr.Error("Topp must be non-negative.")
topk = int(topk)
if decoder == "MultiBand_Diffusion":
USE_DIFFUSION = True
load_diffusion()
else:
USE_DIFFUSION = False
load_model(model)
def _progress(generated, to_generate):
progress((min(generated, to_generate), to_generate))
if INTERRUPTING:
raise gr.Error("Interrupted.")
MODEL.set_custom_progress_callback(_progress)
videos, wavs = _do_predictions(
[text], [melody], duration, progress=True,
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef)
if USE_DIFFUSION:
return videos[0], wavs[0], videos[1], wavs[1]
return videos[0], wavs[0], None, None
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(source="microphone", value=None, label="Microphone")
else:
return gr.update(source="upload", value=None, label="File")
def toggle_diffusion(choice):
if choice == "MultiBand_Diffusion":
return [gr.update(visible=True)] * 2
else:
return [gr.update(visible=False)] * 2
def ui_full(launch_kwargs):
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Input Text", interactive=True)
# with gr.Column():
# radio = gr.Radio(["file", "mic"], value="file",
# label="Condition on a melody (optional) File or Mic")
# melody = gr.Audio(source="upload", type="numpy", label="File",
# interactive=True, elem_id="melody-input")
with gr.Row():
submit = gr.Button("Submit")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False)
with gr.Row():
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small",
"facebook/musicgen-large"],
label="Model", value="facebook/musicgen-melody", interactive=True)
# with gr.Row():
# decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
# label="Decoder", value="Default", interactive=True)
# decoder = "Default"
with gr.Row():
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True)
# with gr.Row():
# topk = gr.Number(label="Top-k", value=250, interactive=True)
# topp = gr.Number(label="Top-p", value=0, interactive=True)
# temperature = gr.Number(label="Temperature", value=1.0, interactive=True)
# cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True)
with gr.Column():
output = gr.Video(label="Generated Music")
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath')
# diffusion_output = gr.Video(label="MultiBand Diffusion Decoder")
# audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath')
melody = gr.Audio(source= None, type="numpy", label="File",
interactive=False, visible= False, elem_id="melody-input")
decoder = gr.Radio(["Default", "MultiBand_Diffusion"],
label="Decoder", value="Default", interactive=True, visible= False)
# duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True, visible= False)
topk = gr.Number(label="Top-k", value=250, interactive=True, visible= False)
topp = gr.Number(label="Top-p", value=0, interactive=True, visible= False)
temperature = gr.Number(label="Temperature", value=1.0, interactive=True, visible= False)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True, visible= False)
diffusion_output = gr.Video(label="MultiBand Diffusion Decoder" , visible=False)
audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath', visible= False)
print("melody", melody)
print("decoder", decoder)
print("topk", topk)
print("topp", topp)
print("cfg_coef", cfg_coef)
print("diffusion_output" , diffusion_output)
print("audio_diffusion" , audio_diffusion)
submit.click(toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False,
show_progress=False).then(predict_full, inputs=[model, decoder, text, melody, duration, topk, topp,
temperature, cfg_coef],
outputs=[output, audio_output, diffusion_output, audio_diffusion])
# radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
# gr.Examples(
# fn=predict_full,
# examples=[
# [
# "An 80s driving pop song with heavy drums and synth pads in the background",
# "./assets/bach.mp3",
# "facebook/musicgen-melody",
# "Default"
# ],
# [
# "A cheerful country song with acoustic guitars",
# "./assets/bolero_ravel.mp3",
# "facebook/musicgen-melody",
# "Default"
# ],
# [
# "90s rock song with electric guitar and heavy drums",
# None,
# "facebook/musicgen-medium",
# "Default"
# ],
# [
# "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
# "./assets/bach.mp3",
# "facebook/musicgen-melody",
# "Default"
# ],
# [
# "lofi slow bpm electro chill with organic samples",
# None,
# "facebook/musicgen-medium",
# "Default"
# ],
# [
# "Punk rock with loud drum and power guitar",
# None,
# "facebook/musicgen-medium",
# "MultiBand_Diffusion"
# ],
# ],
# inputs=[text, melody, model, decoder],
# outputs=[output]
# )
gr.Markdown(
"""
"""
)
interface.queue().launch(**launch_kwargs)
def ui_batched(launch_kwargs):
with gr.Blocks() as demo:
gr.Markdown(
"""
This project generate Music from prompt.
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Describe your music", lines=2, interactive=True)
with gr.Column():
radio = gr.Radio(["file", "mic"], value="file",
label="Condition on a melody (optional) File or Mic")
melody = gr.Audio(source="upload", type="numpy", label="File",
interactive=True, elem_id="melody-input")
with gr.Row():
submit = gr.Button("Generate")
with gr.Column():
output = gr.Video(label="Generated Music")
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath')
submit.click(predict_batched, inputs=[text, melody],
outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE)
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
gr.Examples(
fn=predict_batched,
# examples=[
# [
# "An 80s driving pop song with heavy drums and synth pads in the background",
# "./assets/bach.mp3",
# ],
# [
# "A cheerful country song with acoustic guitars",
# "./assets/bolero_ravel.mp3",
# ],
# [
# "90s rock song with electric guitar and heavy drums",
# None,
# ],
# [
# "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
# "./assets/bach.mp3",
# ],
# [
# "lofi slow bpm electro chill with organic samples",
# None,
# ],
# ],
examples=[
],
inputs=[text, melody],
outputs=[output]
)
gr.Markdown("""
""")
demo.queue(max_size=8 * 4).launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
# Show the interface
if IS_BATCHED:
global USE_DIFFUSION
USE_DIFFUSION = False
ui_batched(launch_kwargs)
else:
ui_full(launch_kwargs)
|