File size: 6,331 Bytes
f1e9197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import typing as tp

import torchaudio
import torch
from torch import nn
from einops import rearrange

from ...modules import NormConv2d
from .base import MultiDiscriminator, MultiDiscriminatorOutputType


def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)):
    return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2)


class DiscriminatorSTFT(nn.Module):
    """STFT sub-discriminator.

    Args:
        filters (int): Number of filters in convolutions.
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        n_fft (int): Size of FFT for each scale.
        hop_length (int): Length of hop between STFT windows for each scale.
        kernel_size (tuple of int): Inner Conv2d kernel sizes.
        stride (tuple of int): Inner Conv2d strides.
        dilations (list of int): Inner Conv2d dilation on the time dimension.
        win_length (int): Window size for each scale.
        normalized (bool): Whether to normalize by magnitude after stft.
        norm (str): Normalization method.
        activation (str): Activation function.
        activation_params (dict): Parameters to provide to the activation function.
        growth (int): Growth factor for the filters.
    """
    def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1,
                 n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024,
                 filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4],
                 stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm',
                 activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}):
        super().__init__()
        assert len(kernel_size) == 2
        assert len(stride) == 2
        self.filters = filters
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.normalized = normalized
        self.activation = getattr(torch.nn, activation)(**activation_params)
        self.spec_transform = torchaudio.transforms.Spectrogram(
            n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window,
            normalized=self.normalized, center=False, pad_mode=None, power=None)
        spec_channels = 2 * self.in_channels
        self.convs = nn.ModuleList()
        self.convs.append(
            NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size))
        )
        in_chs = min(filters_scale * self.filters, max_filters)
        for i, dilation in enumerate(dilations):
            out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
            self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride,
                                         dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)),
                                         norm=norm))
            in_chs = out_chs
        out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters)
        self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]),
                                     padding=get_2d_padding((kernel_size[0], kernel_size[0])),
                                     norm=norm))
        self.conv_post = NormConv2d(out_chs, self.out_channels,
                                    kernel_size=(kernel_size[0], kernel_size[0]),
                                    padding=get_2d_padding((kernel_size[0], kernel_size[0])),
                                    norm=norm)

    def forward(self, x: torch.Tensor):
        fmap = []
        z = self.spec_transform(x)  # [B, 2, Freq, Frames, 2]
        z = torch.cat([z.real, z.imag], dim=1)
        z = rearrange(z, 'b c w t -> b c t w')
        for i, layer in enumerate(self.convs):
            z = layer(z)
            z = self.activation(z)
            fmap.append(z)
        z = self.conv_post(z)
        return z, fmap


class MultiScaleSTFTDiscriminator(MultiDiscriminator):
    """Multi-Scale STFT (MS-STFT) discriminator.

    Args:
        filters (int): Number of filters in convolutions.
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        sep_channels (bool): Separate channels to distinct samples for stereo support.
        n_ffts (Sequence[int]): Size of FFT for each scale.
        hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale.
        win_lengths (Sequence[int]): Window size for each scale.
        **kwargs: Additional args for STFTDiscriminator.
    """
    def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1, sep_channels: bool = False,
                 n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128],
                 win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs):
        super().__init__()
        assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
        self.sep_channels = sep_channels
        self.discriminators = nn.ModuleList([
            DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels,
                              n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs)
            for i in range(len(n_ffts))
        ])

    @property
    def num_discriminators(self):
        return len(self.discriminators)

    def _separate_channels(self, x: torch.Tensor) -> torch.Tensor:
        B, C, T = x.shape
        return x.view(-1, 1, T)

    def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType:
        logits = []
        fmaps = []
        for disc in self.discriminators:
            logit, fmap = disc(x)
            logits.append(logit)
            fmaps.append(fmap)
        return logits, fmaps