Spaces:
Runtime error
Runtime error
import argparse | |
from concurrent.futures import ProcessPoolExecutor | |
import os | |
from pathlib import Path | |
import subprocess as sp | |
from tempfile import NamedTemporaryFile | |
import time | |
import typing as tp | |
import warnings | |
import torch | |
import gradio as gr | |
from audiocraft.data.audio_utils import convert_audio | |
from audiocraft.data.audio import audio_write | |
from audiocraft.models import MusicGen, MultiBandDiffusion | |
MODEL = None # Last used model | |
IS_BATCHED = "facebook/MusicGen" in os.environ.get('SPACE_ID', '') | |
print(IS_BATCHED) | |
MAX_BATCH_SIZE = 12 | |
BATCHED_DURATION = 15 | |
INTERRUPTING = False | |
MBD = None | |
# We have to wrap subprocess call to clean a bit the log when using gr.make_waveform | |
_old_call = sp.call | |
def _call_nostderr(*args, **kwargs): | |
# Avoid ffmpeg vomiting on the logs. | |
kwargs['stderr'] = sp.DEVNULL | |
kwargs['stdout'] = sp.DEVNULL | |
_old_call(*args, **kwargs) | |
sp.call = _call_nostderr | |
# Preallocating the pool of processes. | |
pool = ProcessPoolExecutor(4) | |
pool.__enter__() | |
def interrupt(): | |
global INTERRUPTING | |
INTERRUPTING = True | |
class FileCleaner: | |
def __init__(self, file_lifetime: float = 3600): | |
self.file_lifetime = file_lifetime | |
self.files = [] | |
def add(self, path: tp.Union[str, Path]): | |
self._cleanup() | |
self.files.append((time.time(), Path(path))) | |
def _cleanup(self): | |
now = time.time() | |
for time_added, path in list(self.files): | |
if now - time_added > self.file_lifetime: | |
if path.exists(): | |
path.unlink() | |
self.files.pop(0) | |
else: | |
break | |
file_cleaner = FileCleaner() | |
def make_waveform(*args, **kwargs): | |
# Further remove some warnings. | |
be = time.time() | |
with warnings.catch_warnings(): | |
warnings.simplefilter('ignore') | |
out = gr.make_waveform(*args, **kwargs) | |
print("Make a video took", time.time() - be) | |
return out | |
def load_model(version='facebook/musicgen-melody'): | |
global MODEL | |
print("Loading model", version) | |
if MODEL is None or MODEL.name != version: | |
MODEL = MusicGen.get_pretrained(version) | |
def load_diffusion(): | |
global MBD | |
if MBD is None: | |
print("loading MBD") | |
MBD = MultiBandDiffusion.get_mbd_musicgen() | |
def _do_predictions(texts, melodies, duration, progress=False, **gen_kwargs): | |
MODEL.set_generation_params(duration=duration, **gen_kwargs) | |
print("new batch", len(texts), texts, [None if m is None else (m[0], m[1].shape) for m in melodies]) | |
be = time.time() | |
processed_melodies = [] | |
target_sr = 32000 | |
target_ac = 1 | |
for melody in melodies: | |
if melody is None: | |
processed_melodies.append(None) | |
else: | |
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t() | |
if melody.dim() == 1: | |
melody = melody[None] | |
melody = melody[..., :int(sr * duration)] | |
melody = convert_audio(melody, sr, target_sr, target_ac) | |
processed_melodies.append(melody) | |
if any(m is not None for m in processed_melodies): | |
outputs = MODEL.generate_with_chroma( | |
descriptions=texts, | |
melody_wavs=processed_melodies, | |
melody_sample_rate=target_sr, | |
progress=progress, | |
return_tokens=USE_DIFFUSION | |
) | |
else: | |
outputs = MODEL.generate(texts, progress=progress, return_tokens=USE_DIFFUSION) | |
if USE_DIFFUSION: | |
outputs_diffusion = MBD.tokens_to_wav(outputs[1]) | |
outputs = torch.cat([outputs[0], outputs_diffusion], dim=0) | |
outputs = outputs.detach().cpu().float() | |
pending_videos = [] | |
out_wavs = [] | |
for output in outputs: | |
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
audio_write( | |
file.name, output, MODEL.sample_rate, strategy="loudness", | |
loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) | |
pending_videos.append(pool.submit(make_waveform, file.name)) | |
out_wavs.append(file.name) | |
file_cleaner.add(file.name) | |
out_videos = [pending_video.result() for pending_video in pending_videos] | |
for video in out_videos: | |
file_cleaner.add(video) | |
print("batch finished", len(texts), time.time() - be) | |
print("Tempfiles currently stored: ", len(file_cleaner.files)) | |
return out_videos, out_wavs | |
def predict_batched(texts, melodies): | |
max_text_length = 512 | |
texts = [text[:max_text_length] for text in texts] | |
load_model('facebook/musicgen-melody') | |
res = _do_predictions(texts, melodies, BATCHED_DURATION) | |
return res | |
def predict_full(model, decoder, text, melody, duration, topk, topp, temperature, cfg_coef, progress=gr.Progress()): | |
global INTERRUPTING | |
global USE_DIFFUSION | |
INTERRUPTING = False | |
if temperature < 0: | |
raise gr.Error("Temperature must be >= 0.") | |
if topk < 0: | |
raise gr.Error("Topk must be non-negative.") | |
if topp < 0: | |
raise gr.Error("Topp must be non-negative.") | |
topk = int(topk) | |
if decoder == "MultiBand_Diffusion": | |
USE_DIFFUSION = True | |
load_diffusion() | |
else: | |
USE_DIFFUSION = False | |
load_model(model) | |
def _progress(generated, to_generate): | |
progress((min(generated, to_generate), to_generate)) | |
if INTERRUPTING: | |
raise gr.Error("Interrupted.") | |
MODEL.set_custom_progress_callback(_progress) | |
videos, wavs = _do_predictions( | |
[text], [melody], duration, progress=True, | |
top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef) | |
if USE_DIFFUSION: | |
return videos[0], wavs[0], videos[1], wavs[1] | |
return videos[0], wavs[0], None, None | |
def toggle_audio_src(choice): | |
if choice == "mic": | |
return gr.update(source="microphone", value=None, label="Microphone") | |
else: | |
return gr.update(source="upload", value=None, label="File") | |
def toggle_diffusion(choice): | |
if choice == "MultiBand_Diffusion": | |
return [gr.update(visible=True)] * 2 | |
else: | |
return [gr.update(visible=False)] * 2 | |
def ui_full(launch_kwargs): | |
with gr.Blocks() as interface: | |
gr.Markdown( | |
""" | |
# MusicGen | |
This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft), | |
a simple and controllable model for music generation | |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Input Text", interactive=True) | |
with gr.Column(): | |
radio = gr.Radio(["file", "mic"], value="file", | |
label="Condition on a melody (optional) File or Mic") | |
melody = gr.Audio(source="upload", type="numpy", label="File", | |
interactive=True, elem_id="melody-input") | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license. | |
_ = gr.Button("Interrupt").click(fn=interrupt, queue=False) | |
with gr.Row(): | |
model = gr.Radio(["facebook/musicgen-melody", "facebook/musicgen-medium", "facebook/musicgen-small", | |
"facebook/musicgen-large"], | |
label="Model", value="facebook/musicgen-melody", interactive=True) | |
with gr.Row(): | |
decoder = gr.Radio(["Default", "MultiBand_Diffusion"], | |
label="Decoder", value="Default", interactive=True) | |
with gr.Row(): | |
duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True) | |
with gr.Row(): | |
topk = gr.Number(label="Top-k", value=250, interactive=True) | |
topp = gr.Number(label="Top-p", value=0, interactive=True) | |
temperature = gr.Number(label="Temperature", value=1.0, interactive=True) | |
cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) | |
with gr.Column(): | |
output = gr.Video(label="Generated Music") | |
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath') | |
diffusion_output = gr.Video(label="MultiBand Diffusion Decoder") | |
audio_diffusion = gr.Audio(label="MultiBand Diffusion Decoder (wav)", type='filepath') | |
submit.click(toggle_diffusion, decoder, [diffusion_output, audio_diffusion], queue=False, | |
show_progress=False).then(predict_full, inputs=[model, decoder, text, melody, duration, topk, topp, | |
temperature, cfg_coef], | |
outputs=[output, audio_output, diffusion_output, audio_diffusion]) | |
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False) | |
gr.Examples( | |
fn=predict_full, | |
examples=[ | |
[ | |
"An 80s driving pop song with heavy drums and synth pads in the background", | |
"./assets/bach.mp3", | |
"facebook/musicgen-melody", | |
"Default" | |
], | |
[ | |
"A cheerful country song with acoustic guitars", | |
"./assets/bolero_ravel.mp3", | |
"facebook/musicgen-melody", | |
"Default" | |
], | |
[ | |
"90s rock song with electric guitar and heavy drums", | |
None, | |
"facebook/musicgen-medium", | |
"Default" | |
], | |
[ | |
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", | |
"./assets/bach.mp3", | |
"facebook/musicgen-melody", | |
"Default" | |
], | |
[ | |
"lofi slow bpm electro chill with organic samples", | |
None, | |
"facebook/musicgen-medium", | |
"Default" | |
], | |
[ | |
"Punk rock with loud drum and power guitar", | |
None, | |
"facebook/musicgen-medium", | |
"MultiBand_Diffusion" | |
], | |
], | |
inputs=[text, melody, model, decoder], | |
outputs=[output] | |
) | |
gr.Markdown( | |
""" | |
### More details | |
The model will generate a short music extract based on the description you provided. | |
The model can generate up to 30 seconds of audio in one pass. It is now possible | |
to extend the generation by feeding back the end of the previous chunk of audio. | |
This can take a long time, and the model might lose consistency. The model might also | |
decide at arbitrary positions that the song ends. | |
**WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min). | |
An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds | |
are generated each time. | |
We present 4 model variations: | |
1. facebook/musicgen-melody -- a music generation model capable of generating music condition | |
on text and melody inputs. **Note**, you can also use text only. | |
2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only. | |
3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only. | |
4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only. | |
We also present two way of decoding the audio tokens | |
1. Use the default GAN based compression model | |
2. Use MultiBand Diffusion from (paper linknano ) | |
When using `facebook/musicgen-melody`, you can optionally provide a reference audio from | |
which a broad melody will be extracted. The model will then try to follow both | |
the description and melody provided. | |
You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
for more details. | |
""" | |
) | |
interface.queue().launch(**launch_kwargs) | |
def ui_batched(launch_kwargs): | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# MusicGen | |
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), | |
a simple and controllable model for music generation | |
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284). | |
<br/> | |
<a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true" | |
style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" | |
src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
for longer sequences, more control and no queue.</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
text = gr.Text(label="Describe your music", lines=2, interactive=True) | |
with gr.Column(): | |
radio = gr.Radio(["file", "mic"], value="file", | |
label="Condition on a melody (optional) File or Mic") | |
melody = gr.Audio(source="upload", type="numpy", label="File", | |
interactive=True, elem_id="melody-input") | |
with gr.Row(): | |
submit = gr.Button("Generate") | |
with gr.Column(): | |
output = gr.Video(label="Generated Music") | |
audio_output = gr.Audio(label="Generated Music (wav)", type='filepath') | |
submit.click(predict_batched, inputs=[text, melody], | |
outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE) | |
radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False) | |
gr.Examples( | |
fn=predict_batched, | |
examples=[ | |
[ | |
"An 80s driving pop song with heavy drums and synth pads in the background", | |
"./assets/bach.mp3", | |
], | |
[ | |
"A cheerful country song with acoustic guitars", | |
"./assets/bolero_ravel.mp3", | |
], | |
[ | |
"90s rock song with electric guitar and heavy drums", | |
None, | |
], | |
[ | |
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", | |
"./assets/bach.mp3", | |
], | |
[ | |
"lofi slow bpm electro chill with organic samples", | |
None, | |
], | |
], | |
inputs=[text, melody], | |
outputs=[output] | |
) | |
gr.Markdown(""" | |
### More details | |
The model will generate 12 seconds of audio based on the description you provided. | |
You can optionally provide a reference audio from which a broad melody will be extracted. | |
The model will then try to follow both the description and melody provided. | |
All samples are generated with the `melody` model. | |
You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
for more details. | |
""") | |
demo.queue(max_size=8 * 4).launch(**launch_kwargs) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'--listen', | |
type=str, | |
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', | |
help='IP to listen on for connections to Gradio', | |
) | |
parser.add_argument( | |
'--username', type=str, default='', help='Username for authentication' | |
) | |
parser.add_argument( | |
'--password', type=str, default='', help='Password for authentication' | |
) | |
parser.add_argument( | |
'--server_port', | |
type=int, | |
default=0, | |
help='Port to run the server listener on', | |
) | |
parser.add_argument( | |
'--inbrowser', action='store_true', help='Open in browser' | |
) | |
parser.add_argument( | |
'--share', action='store_true', help='Share the gradio UI' | |
) | |
args = parser.parse_args() | |
launch_kwargs = {} | |
launch_kwargs['server_name'] = args.listen | |
if args.username and args.password: | |
launch_kwargs['auth'] = (args.username, args.password) | |
if args.server_port: | |
launch_kwargs['server_port'] = args.server_port | |
if args.inbrowser: | |
launch_kwargs['inbrowser'] = args.inbrowser | |
if args.share: | |
launch_kwargs['share'] = args.share | |
# Show the interface | |
if IS_BATCHED: | |
global USE_DIFFUSION | |
USE_DIFFUSION = False | |
ui_batched(launch_kwargs) | |
else: | |
ui_full(launch_kwargs) | |