videoshop-backend / audiocraft /optim /cosine_lr_scheduler.py
anthonyrusso's picture
upload audiocraft
f1e9197
raw
history blame
1.73 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
class CosineLRScheduler(_LRScheduler):
"""Cosine LR scheduler.
Args:
optimizer (Optimizer): Torch optimizer.
warmup_steps (int): Number of warmup steps.
total_steps (int): Total number of steps.
lr_min_ratio (float): Minimum learning rate.
cycle_length (float): Cycle length.
"""
def __init__(self, optimizer: Optimizer, total_steps: int, warmup_steps: int,
lr_min_ratio: float = 0.0, cycle_length: float = 1.0):
self.warmup_steps = warmup_steps
assert self.warmup_steps >= 0
self.total_steps = total_steps
assert self.total_steps >= 0
self.lr_min_ratio = lr_min_ratio
self.cycle_length = cycle_length
super().__init__(optimizer)
def _get_sched_lr(self, lr: float, step: int):
if step < self.warmup_steps:
lr_ratio = step / self.warmup_steps
lr = lr_ratio * lr
elif step <= self.total_steps:
s = (step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
lr_ratio = self.lr_min_ratio + 0.5 * (1 - self.lr_min_ratio) * \
(1. + math.cos(math.pi * s / self.cycle_length))
lr = lr_ratio * lr
else:
lr_ratio = self.lr_min_ratio
lr = lr_ratio * lr
return lr
def get_lr(self):
return [self._get_sched_lr(lr, self.last_epoch) for lr in self.base_lrs]