videoshop-backend / audiocraft /models /multibanddiffusion.py
anthonyrusso's picture
upload audiocraft
f1e9197
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Multi Band Diffusion models as described in
"From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion"
(paper link).
"""
import typing as tp
import torch
import julius
from .unet import DiffusionUnet
from ..modules.diffusion_schedule import NoiseSchedule
from .encodec import CompressionModel
from ..solvers.compression import CompressionSolver
from .loaders import load_compression_model, load_diffusion_models
class DiffusionProcess:
"""Sampling for a diffusion Model.
Args:
model (DiffusionUnet): Diffusion U-Net model.
noise_schedule (NoiseSchedule): Noise schedule for diffusion process.
"""
def __init__(self, model: DiffusionUnet, noise_schedule: NoiseSchedule) -> None:
"""
"""
self.model = model
self.schedule = noise_schedule
def generate(self, condition: torch.Tensor, initial_noise: torch.Tensor,
step_list: tp.Optional[tp.List[int]] = None):
"""Perform one diffusion process to generate one of the bands.
Args:
condition (tensor): The embeddings form the compression model.
initial_noise (tensor): The initial noise to start the process/
"""
return self.schedule.generate_subsampled(model=self.model, initial=initial_noise, step_list=step_list,
condition=condition)
class MultiBandDiffusion:
"""Sample from multiple diffusion models.
Args:
DPs (list of DiffusionProcess): Diffusion processes.
codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens.
"""
def __init__(self, DPs: tp.List[DiffusionProcess], codec_model: CompressionModel) -> None:
self.DPs = DPs
self.codec_model = codec_model
self.device = next(self.codec_model.parameters()).device
@property
def sample_rate(self) -> int:
return self.codec_model.sample_rate
@staticmethod
def get_mbd_musicgen(device=None):
"""Load our diffusion models trained for MusicGen."""
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
path = 'https://dl.fbaipublicfiles.com/encodec/Diffusion/mbd_musicgen_32khz.th'
name = 'facebook/musicgen-small'
codec_model = load_compression_model(name, device=device)
models, processors, cfgs = load_diffusion_models(path, device=device)
DPs = []
for i in range(len(models)):
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
return MultiBandDiffusion(DPs=DPs, codec_model=codec_model)
@staticmethod
def get_mbd_24khz(bw: float = 3.0, pretrained: bool = True,
device: tp.Optional[tp.Union[torch.device, str]] = None,
n_q: tp.Optional[int] = None):
"""Get the pretrained Models for MultibandDiffusion.
Args:
bw (float): Bandwidth of the compression model.
pretrained (bool): Whether to use / download if necessary the models.
device (torch.device or str, optional): Device on which the models are loaded.
n_q (int, optional): Number of quantizers to use within the compression model.
"""
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
assert bw in [1.5, 3.0, 6.0], f"bandwidth {bw} not available"
if n_q is not None:
assert n_q in [2, 4, 8]
assert {1.5: 2, 3.0: 4, 6.0: 8}[bw] == n_q, \
f"bandwidth and number of codebooks missmatch to use n_q = {n_q} bw should be {n_q * (1.5 / 2)}"
n_q = {1.5: 2, 3.0: 4, 6.0: 8}[bw]
codec_model = CompressionSolver.model_from_checkpoint(
'//pretrained/facebook/encodec_24khz', device=device)
codec_model.set_num_codebooks(n_q)
codec_model = codec_model.to(device)
path = f'https://dl.fbaipublicfiles.com/encodec/Diffusion/mbd_comp_{n_q}.pt'
models, processors, cfgs = load_diffusion_models(path, device=device)
DPs = []
for i in range(len(models)):
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
return MultiBandDiffusion(DPs=DPs, codec_model=codec_model)
return MultiBandDiffusion(DPs, codec_model)
@torch.no_grad()
def get_condition(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
"""Get the conditioning (i.e. latent reprentatios of the compression model) from a waveform.
Args:
wav (torch.Tensor): The audio that we want to extract the conditioning from
sample_rate (int): sample rate of the audio"""
if sample_rate != self.sample_rate:
wav = julius.resample_frac(wav, sample_rate, self.sample_rate)
codes, scale = self.codec_model.encode(wav)
assert scale is None, "Scaled compression models not supported."
emb = self.get_emb(codes)
return emb
@torch.no_grad()
def get_emb(self, codes: torch.Tensor):
"""Get latent representation from the discrete codes
Argrs:
codes (torch.Tensor): discrete tokens"""
emb = self.codec_model.decode_latent(codes)
return emb
def generate(self, emb: torch.Tensor, size: tp.Optional[torch.Size] = None,
step_list: tp.Optional[tp.List[int]] = None):
"""Generate Wavform audio from the latent embeddings of the compression model
Args:
emb (torch.Tensor): Conditioning embeddinds
size (none torch.Size): size of the output
if None this is computed from the typical upsampling of the model
step_list (optional list[int]): list of Markov chain steps, defaults to 50 linearly spaced step.
"""
if size is None:
upsampling = int(self.codec_model.sample_rate / self.codec_model.frame_rate)
size = torch.Size([emb.size(0), self.codec_model.channels, emb.size(-1) * upsampling])
assert size[0] == emb.size(0)
out = torch.zeros(size).to(self.device)
for DP in self.DPs:
out += DP.generate(condition=emb, step_list=step_list, initial_noise=torch.randn_like(out))
return out
def re_eq(self, wav: torch.Tensor, ref: torch.Tensor, n_bands: int = 32, strictness: float = 1):
"""match the eq to the encodec output by matching the standard deviation of some frequency bands
Args:
wav (torch.Tensor): audio to equalize
ref (torch.Tensor):refenrence audio from which we match the spectrogram.
n_bands (int): number of bands of the eq
strictness (float): how strict the the matching. 0 is no matching, 1 is exact matching.
"""
split = julius.SplitBands(n_bands=n_bands, sample_rate=self.codec_model.sample_rate).to(wav.device)
bands = split(wav)
bands_ref = split(ref)
out = torch.zeros_like(ref)
for i in range(n_bands):
out += bands[i] * (bands_ref[i].std() / bands[i].std()) ** strictness
return out
def regenerate(self, wav: torch.Tensor, sample_rate: int):
"""Regenerate a wavform through compression and diffusion regeneration.
Args:
wav (torch.Tensor): Original 'ground truth' audio
sample_rate (int): sample rate of the input (and output) wav
"""
if sample_rate != self.codec_model.sample_rate:
wav = julius.resample_frac(wav, sample_rate, self.codec_model.sample_rate)
emb = self.get_condition(wav, sample_rate=self.codec_model.sample_rate)
size = wav.size()
out = self.generate(emb, size=size)
if sample_rate != self.codec_model.sample_rate:
out = julius.resample_frac(out, self.codec_model.sample_rate, sample_rate)
return out
def tokens_to_wav(self, tokens: torch.Tensor, n_bands: int = 32):
"""Generate Waveform audio with diffusion from the discrete codes.
Args:
tokens (torch.Tensor): discrete codes
n_bands (int): bands for the eq matching.
"""
wav_encodec = self.codec_model.decode(tokens)
condition = self.get_emb(tokens)
wav_diffusion = self.generate(emb=condition, size=wav_encodec.size())
return self.re_eq(wav=wav_diffusion, ref=wav_encodec, n_bands=n_bands)