Spaces:
Running
Running
File size: 1,378 Bytes
018ee62 c39399d 018ee62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "Ransss/llama3-8B-DarkIdol-2.0-Uncensored-Q8_0-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True)
def generate_text(prompt, max_length=100, temperature=0.7):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
inputs["input_ids"],
max_length=max_length,
temperature=temperature,
do_sample=True,
top_p=0.9,
top_k=50,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create a Gradio interface
gr.Interface(
fn=generate_text,
inputs=[
gr.inputs.Textbox(label="Input Text"),
gr.inputs.Slider(label="Max Length", minimum=1, maximum=500, value=100, step=1),
gr.inputs.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1),
],
outputs=gr.outputs.Textbox(label="Generated Text"),
title="LLAMA 3 8B Model",
description="Generate text using the LLAMA 3 8B model.",
examples=[
["Write a poem about the sun"],
["Generate a story about a robot"],
["Create a song lyrics about love"],
],
).launch() |