File size: 6,158 Bytes
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch.nn as nn
import torch
import numpy as np

# class GC_Loss(nn.Module):
#     def __init__(self, queue_len=800):
#         super(GC_Loss, self).__init__()
#         self.pred_queue = list()
#         self.gt_queue = list()
#         self.queue_len = 0
            
#         self.queue_max_len = queue_len

#         print('CCWD Length: ', queue_len)

#         self.l1_loss = torch.nn.L1Loss().cuda()
#         self.l2_loss = torch.nn.MSELoss().cuda()

#     def enqueue(self, pred, gt):
#         bs = pred.shape[0]
#         self.queue_len = self.queue_len + bs

#         self.pred_queue = self.pred_queue + pred.cpu().detach().numpy().tolist()
#         self.gt_queue = self.gt_queue + gt.cpu().detach().numpy().tolist()

#         if self.queue_len > self.queue_max_len:
#             self.dequeue(self.queue_len - self.queue_max_len)
#             self.queue_len = self.queue_max_len

#     def dequeue(self, n):
#         for index in range(n):
#             self.pred_queue.pop(0)
#             self.gt_queue.pop(0)

#     def clear(self):
#         self.pred_queue.clear()
#         self.gt_queue.clear()

#     def forward(self, x, y):
#         x_queue = self.pred_queue.copy()
#         y_queue = self.gt_queue.copy()

#         # 获取队列中的所有值
#         x_all = torch.cat((x, torch.tensor(x_queue).cuda()), dim=0)
#         y_all = torch.cat((y, torch.tensor(y_queue).cuda()), dim=0)

#         # 估计均值和方差
#         x_bar = torch.mean(x_all, dim=0)
#         x_std = torch.std(x_all, dim=0)

#         y_bar = torch.mean(y_all, dim=0)
#         y_std = torch.std(y_all, dim=0)

#         # 估计预测值在整体值中的PLCC
#         diff_x_plcc = (x - x_bar)  # [bs, 1]
#         diff_y_plcc = (y - y_bar)  # [bs, 1]

#         x1 = torch.sum(torch.mul(diff_x_plcc, diff_y_plcc))
#         x2_1 = torch.sqrt(torch.sum(torch.mul(diff_x_plcc, diff_x_plcc)))
#         x2_2 = torch.sqrt(torch.sum(torch.mul(diff_y_plcc, diff_y_plcc)))

#         # 对所有值标准化
#         diff_x = (x_all - x_bar) / x_std  # [bs, 1]
#         diff_y = (y_all - y_bar) / y_std  # [bs, 1]

#         rank_x = diff_x.reshape(-1, 1)
#         rank_y = diff_y.reshape(-1, 1)

#         rank_x = rank_x - rank_x.transpose(1, 0)
#         rank_y = rank_y - rank_y.transpose(1, 0)

#         # 对所有值估计排序
#         rank_x = torch.sum(1 / 2 * (1 + torch.erf(rank_x)), dim=1)
#         rank_y = torch.sum(1 / 2 * (1 + torch.erf(rank_y)), dim=1)

#         # 计算排序后的均值和方差
#         rank_x_bar = torch.mean(rank_x, dim=0)
#         rank_x_std = torch.std(rank_x, dim=0)
#         rank_y_bar = torch.mean(rank_y, dim=0)
#         rank_y_std = torch.std(rank_y, dim=0)

#         # 估计预测值在整体值中的SROCC
#         rank_x_ = (x - rank_x_bar) / rank_x_std  # [bs, 1]
#         rank_y_ = (y - rank_y_bar) / rank_y_std  # [bs, 1]

#         x1_rank = torch.sum(torch.mul(rank_x_, rank_y_))
#         x2_1_rank = torch.sqrt(torch.sum(torch.mul(rank_x_, rank_x_)))
#         x2_2_rank = torch.sqrt(torch.sum(torch.mul(rank_y_, rank_y_)))

#         self.enqueue(x, y)

#         return (0.5 * ((1 - x1 / (x2_1 * x2_2)) + (1 - (x1_rank / (x2_1_rank * x2_2_rank)))) + 1) * self.l2_loss(x, y)

class GC_Loss(nn.Module):
    def __init__(self, queue_len=800, alpha=0.5, beta=0.5, gamma=1):
        super(GC_Loss, self).__init__()
        self.pred_queue = list()
        self.gt_queue = list()
        self.queue_len = 0

        self.queue_max_len = queue_len
        print('The queue length is: ', self.queue_max_len)
        self.mse = torch.nn.MSELoss().cuda()

        self.alpha, self.beta, self.gamma = alpha, beta, gamma

    def consistency(self, pred_data, gt_data):
        pred_one_batch, pred_queue = pred_data
        gt_one_batch, gt_queue = gt_data

        pred_mean = torch.mean(pred_queue)
        gt_mean = torch.mean(gt_queue)

        diff_pred = pred_one_batch - pred_mean
        diff_gt = gt_one_batch - gt_mean

        x1 = torch.sum(torch.mul(diff_pred, diff_gt))
        x2_1 = torch.sqrt(torch.sum(torch.mul(diff_pred, diff_pred)))
        x2_2 = torch.sqrt(torch.sum(torch.mul(diff_gt, diff_gt)))

        return x1 / (x2_1 * x2_2)

    def ppra(self, x):
        """
            Pairwise Preference-based Rank Approximation
        """

        x_bar, x_std = torch.mean(x), torch.std(x)
        x_n = (x - x_bar) / x_std
        x_n_T = x_n.reshape(-1, 1)

        rank_x = x_n_T - x_n_T.transpose(1, 0)
        rank_x = torch.sum(1 / 2 * (1 + torch.erf(rank_x / torch.sqrt(torch.tensor(2, dtype=torch.float)))), dim=1)

        return rank_x

    @torch.no_grad()
    def enqueue(self, pred, gt):
        bs = pred.shape[0]
        self.queue_len = self.queue_len + bs

        self.pred_queue = self.pred_queue + pred.tolist()
        self.gt_queue = self.gt_queue + gt.cpu().detach().numpy().tolist()

        if self.queue_len > self.queue_max_len:
            self.dequeue(self.queue_len - self.queue_max_len)
            self.queue_len = self.queue_max_len

    @torch.no_grad()
    def dequeue(self, n):
        for _ in range(n):
            self.pred_queue.pop(0)
            self.gt_queue.pop(0)

    def clear(self):
        self.pred_queue.clear()
        self.gt_queue.clear()

    def forward(self, x, y):
        x_queue = self.pred_queue.copy()
        y_queue = self.gt_queue.copy()

        x_all = torch.cat((x, torch.tensor(x_queue).cuda()), dim=0)
        y_all = torch.cat((y, torch.tensor(y_queue).cuda()), dim=0)

        PLCC = self.consistency((x, x_all), (y, y_all))
        PGC = 1 - PLCC

        rank_x = self.ppra(x_all)
        rank_y = self.ppra(y_all)
        SROCC = self.consistency((rank_x[:x.shape[0]], rank_x), (rank_y[:y.shape[0]], rank_y))
        SGC = 1 - SROCC

        GC = (self.alpha * PGC + self.beta * SGC + self.gamma) * self.mse(x, y)
        self.enqueue(x, y)

        return GC


if __name__ == '__main__':
    gc = GC_Loss().cuda()
    x = torch.tensor([1, 2, 3, 4, 5], dtype=torch.float).cuda()
    y = torch.tensor([6, 7, 8, 9, 15], dtype=torch.float).cuda()

    res = gc(x, y)

    print(res)