File size: 9,961 Bytes
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430f024
07e1105
 
 
 
 
 
 
 
 
 
 
 
430f024
07e1105
 
430f024
 
 
 
 
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430f024
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430f024
07e1105
 
430f024
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430f024
 
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430f024
 
 
 
 
07e1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
    The completion for Mean-opinion Network(MoNet)
"""
import torch
import torch.nn as nn
import timm

from timm.models.vision_transformer import Block
from einops import rearrange


class Attention_Block(nn.Module):
    def __init__(self, dim, drop=0.1):
        super().__init__()
        self.c_q = nn.Linear(dim, dim)
        self.c_k = nn.Linear(dim, dim)
        self.c_v = nn.Linear(dim, dim)
        self.norm_fact = dim ** -0.5
        self.softmax = nn.Softmax(dim=-1)
        self.proj_drop = nn.Dropout(drop)

    def forward(self, x):
        _x = x
        B, C, N = x.shape
        q = self.c_q(x)
        k = self.c_k(x)
        v = self.c_v(x)

        attn = q @ k.transpose(-2, -1) * self.norm_fact
        attn = self.softmax(attn)
        x = (attn @ v).transpose(1, 2).reshape(B, C, N)
        x = self.proj_drop(x)
        x = x + _x
        return x


class Self_Attention(nn.Module):
    """ Self attention Layer"""

    def __init__(self, in_dim):
        super(Self_Attention, self).__init__()

        self.qConv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
        self.kConv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 8, kernel_size=1)
        self.vConv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, inFeature):
        bs, C, w, h = inFeature.size()

        proj_query = self.qConv(inFeature).view(bs, -1, w * h).permute(0, 2, 1)
        proj_key = self.kConv(inFeature).view(bs, -1, w * h)
        energy = torch.bmm(proj_query, proj_key)
        attention = self.softmax(energy)
        proj_value = self.vConv(inFeature).view(bs, -1, w * h)

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(bs, C, w, h)

        out = self.gamma * out + inFeature

        return out


class MAL(nn.Module):
    """
        Multi-view Attention Learning (MAL) module
    """

    def __init__(self, in_dim=768, feature_num=4, feature_size=28, is_gpu=True):
        super().__init__()

        self.channel_attention = Attention_Block(in_dim * feature_num)  # Channel-wise self attention
        self.feature_attention = Attention_Block(feature_size ** 2 * feature_num)  # Pixel-wise self attention

        # Self attention module for each input feature
        self.attention_module = nn.ModuleList()
        for _ in range(feature_num):
            self.attention_module.append(Self_Attention(in_dim))

        self.feature_num = feature_num
        self.in_dim = in_dim
        self.is_gpu = is_gpu

    def forward(self, features):
        if self.is_gpu:
            feature = torch.tensor([]).cuda()
        else:
            feature = torch.tensor([])

        for index, _ in enumerate(features):
            feature = torch.cat((feature, self.attention_module[index](features[index]).unsqueeze(0)), dim=0)
        features = feature

        input_tensor = rearrange(features, 'n b c w h -> b (n c) (w h)')  # bs, 768 * feature_num, 28 * 28
        bs, _, _ = input_tensor.shape  # [2, 3072, 784]

        in_feature = rearrange(input_tensor, 'b (w c) h -> b w (c h)', w=self.in_dim, c=self.feature_num)  # bs, 768, 28 * 28 * feature_num
        feature_weight_sum = self.feature_attention(in_feature)  # bs, 768, 768

        in_channel = input_tensor.permute(0, 2, 1)  # bs, 28 * 28, 768 * feature_num
        channel_weight_sum = self.channel_attention(in_channel)  # bs, 28 * 28, 28 * 28

        weight_sum_res = (rearrange(feature_weight_sum, 'b w (c h) -> b (w c) h', w=self.in_dim,
                                    c=self.feature_num) + channel_weight_sum.permute(0, 2, 1)) / 2  # [2, 3072, 784]

        weight_sum_res = torch.mean(weight_sum_res.view(bs, self.feature_num, self.in_dim, -1), dim=1)

        return weight_sum_res  # bs, 768, 28 * 28


class SaveOutput:
    def __init__(self):
        self.outputs = []

    def __call__(self, module, module_in, module_out):
        self.outputs.append(module_out)

    def clear(self):
        self.outputs = []


class MoNet(nn.Module):
    def __init__(self, config, patch_size=8, drop=0.1, dim_mlp=768, img_size=224, is_gpu=True):
        super().__init__()
        self.img_size = img_size
        self.input_size = img_size // patch_size
        self.dim_mlp = dim_mlp

        self.vit = timm.create_model(config.backbone, pretrained=False)
        self.save_output = SaveOutput()

        # Register Hooks
        hook_handles = []
        for layer in self.vit.modules():
            if isinstance(layer, Block):
                handle = layer.register_forward_hook(self.save_output)
                hook_handles.append(handle)

        self.MALs = nn.ModuleList()
        for _ in range(config.mal_num):
            self.MALs.append(MAL(is_gpu=is_gpu))

        # Image Quality Score Regression
        self.fusion_wam = MAL(feature_num=config.mal_num, is_gpu=is_gpu)
        self.block = Block(dim_mlp, 12)
        self.cnn = nn.Sequential(
            nn.Conv2d(dim_mlp, 256, 5),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.AvgPool2d((2, 2)),
            nn.Conv2d(256, 128, 3),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.AvgPool2d((2, 2)),
            nn.Conv2d(128, 128, 3),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.AvgPool2d((3, 3)),
        )
        self.fc_score = nn.Sequential(
            nn.Linear(128, 128 // 2),
            nn.ReLU(),
            nn.Dropout(drop),
            nn.Linear(128 // 2, 1),
            nn.Sigmoid()
        )

        self.is_gpu = is_gpu

    def extract_feature(self, save_output, block_index=[2, 5, 8, 11]):
        x1 = save_output.outputs[block_index[0]][:, 1:]
        x2 = save_output.outputs[block_index[1]][:, 1:]
        x3 = save_output.outputs[block_index[2]][:, 1:]
        x4 = save_output.outputs[block_index[3]][:, 1:]
        x = torch.cat((x1, x2, x3, x4), dim=2)
        return x

    def forward(self, x):
        # Multi-level Feature From Different Transformer Blocks
        _x = self.vit(x)
        x = self.extract_feature(self.save_output)  # bs, 28 * 28, 768 * 4
        self.save_output.outputs.clear()

        x = x.permute(0, 2, 1)  # bs, 768 * 4, 28 * 28
        x = rearrange(x, 'b (d n) (w h) -> b d n w h', d=4, n=self.dim_mlp, w=self.input_size, h=self.input_size)  # bs, 4, 768, 28, 28
        x = x.permute(1, 0, 2, 3, 4)  # bs, 4, 768, 28 * 28

        # Different Opinion Features (DOF)
        if self.is_gpu:
            DOF = torch.tensor([]).cuda()
        else:
            DOF = torch.tensor([])
        
        for index, _ in enumerate(self.MALs):
            DOF = torch.cat((DOF, self.MALs[index](x).unsqueeze(0)), dim=0)
        DOF = rearrange(DOF, 'n c d (w h) -> n c d w h', w=self.input_size, h=self.input_size)  # 3, bs, 768, 28, 28

        # Image Quality Score Regression
        wam = self.fusion_wam(DOF).permute(0, 2, 1)  # bs, 28 * 28 768
        wam = self.block(wam).permute(0, 2, 1)
        wam = rearrange(wam, 'c d (w h) -> c d w h', w=self.input_size, h=self.input_size)
        score = self.cnn(wam).squeeze(-1).squeeze(-1)
        score = self.fc_score(score).view(-1)

        return score


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--seed', dest='seed', type=int, default=3407)
    parser.add_argument('--gpu_id', dest='gpu_id', type=str, default='0')

    # model related
    parser.add_argument('--backbone', dest='backbone', type=str, default='vit_base_patch8_224',
                        help='The backbone for MoNet.')
    parser.add_argument('--mal_num', dest='mal_num', type=int, default=3, help='The number of the MAL modules.')

    # data related
    parser.add_argument('--dataset', dest='dataset', type=str, default='livec',
                        help='Support datasets: livec|koniq10k|bid|spaq')
    parser.add_argument('--train_patch_num', dest='train_patch_num', type=int, default=5,
                        help='Number of sample patches from training image')
    parser.add_argument('--test_patch_num', dest='test_patch_num', type=int, default=25,
                        help='Number of sample patches from testing image')
    parser.add_argument('--patch_size', dest='patch_size', type=int, default=224,
                        help='Crop size for training & testing image patches')

    # training related
    parser.add_argument('--lr', dest='lr', type=float, default=1e-5, help='Learning rate')
    parser.add_argument('--weight_decay', dest='weight_decay', type=float, default=1e-5, help='Weight decay')
    parser.add_argument('--batch_size', dest='batch_size', type=int, default=11, help='Batch size')
    parser.add_argument('--epochs', dest='epochs', type=int, default=50, help='Epochs for training')
    parser.add_argument('--T_max', dest='T_max', type=int, default=50, help='Hyper-parameter for CosineAnnealingLR')
    parser.add_argument('--eta_min', dest='eta_min', type=int, default=0, help='Hyper-parameter for CosineAnnealingLR')

    parser.add_argument('--save_path', dest='save_path', type=str, default='./training_for_IQA',
                        help='The path where the model and logs will be saved.')

    config = parser.parse_args()

    # torch.autograd.set_detect_anomaly(True)
    # with torch.autograd.detect_anomaly():
    in_tensor = torch.zeros((2, 3, 224, 224), dtype=torch.float).cuda()
    model = MoNet(config).cuda()
    res = model(in_tensor)

    print('{} : {} [M]'.format('#Params', sum(map(lambda x: x.numel(), model.parameters())) / 10 ** 6))

    # label = torch.tensor([1, 2], dtype=torch.float).cuda()
    # loss = torch.nn.L1Loss().cuda()
    #
    # res = model(in_tensor)
    # # loss = loss_func()
    # l = loss(label, res)
    # print(l)
    # l.backward()