Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,463 Bytes
2a8a75a 72fbb8b 2a8a75a 5c77e16 2a8a75a 3c43212 2a8a75a 5c77e16 2a8a75a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
from pathlib import Path
import cv2
import trimesh
import nvdiffrast.torch as dr
from model.archs.decoders.shape_texture_net import TetTexNet
from model.archs.unet import UNetPP
from util.renderer import Renderer
from model.archs.mlp_head import SdfMlp, RgbMlp
import xatlas
class Dummy:
pass
class CRM(nn.Module):
def __init__(self, specs):
super(CRM, self).__init__()
self.specs = specs
# configs
input_specs = specs["Input"]
self.input = Dummy()
self.input.scale = input_specs['scale']
self.input.resolution = input_specs['resolution']
self.tet_grid_size = input_specs['tet_grid_size']
self.camera_angle_num = input_specs['camera_angle_num']
self.arch = Dummy()
self.arch.fea_concat = specs["ArchSpecs"]["fea_concat"]
self.arch.mlp_bias = specs["ArchSpecs"]["mlp_bias"]
self.dec = Dummy()
self.dec.c_dim = specs["DecoderSpecs"]["c_dim"]
self.dec.plane_resolution = specs["DecoderSpecs"]["plane_resolution"]
self.geo_type = specs["Train"].get("geo_type", "flex") # "dmtet" or "flex"
self.unet2 = UNetPP(in_channels=self.dec.c_dim)
mlp_chnl_s = 3 if self.arch.fea_concat else 1 # 3 for queried triplane feature concatenation
self.decoder = TetTexNet(plane_reso=self.dec.plane_resolution, fea_concat=self.arch.fea_concat)
if self.geo_type == "flex":
self.weightMlp = nn.Sequential(
nn.Linear(mlp_chnl_s * 32 * 8, 512),
nn.SiLU(),
nn.Linear(512, 21))
self.sdfMlp = SdfMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias)
self.rgbMlp = RgbMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias)
# self.renderer = Renderer(tet_grid_size=self.tet_grid_size, camera_angle_num=self.camera_angle_num,
# scale=self.input.scale, geo_type = self.geo_type)
self.spob = True if specs['Pretrain']['mode'] is None else False # whether to add sphere
self.radius = specs['Pretrain']['radius'] # used when spob
self.denoising = True
from diffusers import DDIMScheduler
self.scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler")
def decode(self, data, triplane_feature2):
if self.geo_type == "flex":
tet_verts = self.renderer.flexicubes.verts.unsqueeze(0)
tet_indices = self.renderer.flexicubes.indices
dec_verts = self.decoder(triplane_feature2, tet_verts)
out = self.sdfMlp(dec_verts)
weight = None
if self.geo_type == "flex":
grid_feat = torch.index_select(input=dec_verts, index=self.renderer.flexicubes.indices.reshape(-1),dim=1)
grid_feat = grid_feat.reshape(dec_verts.shape[0], self.renderer.flexicubes.indices.shape[0], self.renderer.flexicubes.indices.shape[1] * dec_verts.shape[-1])
weight = self.weightMlp(grid_feat)
weight = weight * 0.1
pred_sdf, deformation = out[..., 0], out[..., 1:]
if self.spob:
pred_sdf = pred_sdf + self.radius - torch.sqrt((tet_verts**2).sum(-1))
_, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight)
return verts[0].unsqueeze(0), faces[0].int()
def export_mesh(self, data, out_dir, tri_fea_2 = None):
verts = data['verts']
faces = data['faces']
dec_verts = self.decoder(tri_fea_2, verts.unsqueeze(0))
colors = self.rgbMlp(dec_verts).squeeze().detach().cpu().numpy()
# Expect predicted colors value range from [-1, 1]
colors = (colors * 0.5 + 0.5).clip(0, 1)
verts = verts[..., [0, 2, 1]]
verts[..., 0]*= -1
verts[..., 2]*= -1
verts = verts.squeeze().cpu().numpy()
faces = faces[..., [2, 1, 0]][..., [0, 2, 1]]#[..., [1, 0, 2]]
faces = faces.squeeze().cpu().numpy()#faces[..., [2, 1, 0]].squeeze().cpu().numpy()
# export the final mesh
with torch.no_grad():
mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) # important, process=True leads to seg fault...
mesh.export(f'{out_dir}.obj')
def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None):
mesh_v = data['verts'].squeeze().cpu().numpy()
mesh_pos_idx = data['faces'].squeeze().cpu().numpy()
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db,
diff_attrs=None if rast_db is None else 'all')
vmapping, indices, uvs = xatlas.parametrize(mesh_v, mesh_pos_idx)
mesh_v = torch.tensor(mesh_v, dtype=torch.float32, device=device)
mesh_pos_idx = torch.tensor(mesh_pos_idx, dtype=torch.int64, device=device)
# Convert to tensors
indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
# mesh_v_tex. ture
uv_clip = uvs[None, ...] * 2.0 - 1.0
# pad to four component coordinate
uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)
# rasterize
rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), res)
# Interpolate world space position
gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
mask = rast[..., 3:4] > 0
# return uvs, mesh_tex_idx, gb_pos, mask
gb_pos_unsqz = gb_pos.view(-1, 3)
mask_unsqz = mask.view(-1)
tex_unsqz = torch.zeros_like(gb_pos_unsqz) + 1
gb_mask_pos = gb_pos_unsqz[mask_unsqz]
gb_mask_pos = gb_mask_pos[None, ]
with torch.no_grad():
dec_verts = self.decoder(tri_fea_2, gb_mask_pos)
colors = self.rgbMlp(dec_verts).squeeze()
# Expect predicted colors value range from [-1, 1]
lo, hi = (-1, 1)
colors = (colors - lo) * (255 / (hi - lo))
colors = colors.clip(0, 255)
tex_unsqz[mask_unsqz] = colors
tex = tex_unsqz.view(res + (3,))
verts = mesh_v.squeeze().cpu().numpy()
faces = mesh_pos_idx[..., [2, 1, 0]].squeeze().cpu().numpy()
# faces = mesh_pos_idx
# faces = faces.detach().cpu().numpy()
# faces = faces[..., [2, 1, 0]]
indices = indices[..., [2, 1, 0]]
# xatlas.export(f"{out_dir}/{ind}.obj", verts[vmapping], indices, uvs)
matname = f'{out_dir}.mtl'
# matname = f'{out_dir}/{ind}.mtl'
fid = open(matname, 'w')
fid.write('newmtl material_0\n')
fid.write('Kd 1 1 1\n')
fid.write('Ka 1 1 1\n')
# fid.write('Ks 0 0 0\n')
fid.write('Ks 0.4 0.4 0.4\n')
fid.write('Ns 10\n')
fid.write('illum 2\n')
fid.write(f'map_Kd {out_dir.split("/")[-1]}.png\n')
fid.close()
fid = open(f'{out_dir}.obj', 'w')
# fid = open(f'{out_dir}/{ind}.obj', 'w')
fid.write('mtllib %s.mtl\n' % out_dir.split("/")[-1])
for pidx, p in enumerate(verts):
pp = p
fid.write('v %f %f %f\n' % (pp[0], pp[2], - pp[1]))
for pidx, p in enumerate(uvs):
pp = p
fid.write('vt %f %f\n' % (pp[0], 1 - pp[1]))
fid.write('usemtl material_0\n')
for i, f in enumerate(faces):
f1 = f + 1
f2 = indices[i] + 1
fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
fid.close()
img = np.asarray(tex.data.cpu().numpy(), dtype=np.float32)
mask = np.sum(img.astype(float), axis=-1, keepdims=True)
mask = (mask <= 3.0).astype(float)
kernel = np.ones((3, 3), 'uint8')
dilate_img = cv2.dilate(img, kernel, iterations=1)
img = img * (1 - mask) + dilate_img * mask
img = img.clip(0, 255).astype(np.uint8)
cv2.imwrite(f'{out_dir}.png', img[..., [2, 1, 0]])
# cv2.imwrite(f'{out_dir}/{ind}.png', img[..., [2, 1, 0]])
|