File size: 13,621 Bytes
a5423cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c8ad42
 
a5423cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a13402
4679ee3
4a13402
9537131
 
4a13402
a5423cb
 
 
 
 
 
 
 
022d233
 
 
a5423cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from MT import FeatureTransformer
from torch.cuda.amp import autocast as autocast
from flow_tools import viz_img_seq, save_img_seq, plt_show_img_flow
from copy import deepcopy
from V1 import V1
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image

def conv(in_planes, out_planes, kernel_size=3, stride=1, dilation=1, isReLU=True):
    if isReLU:
        return nn.Sequential(
            nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                      dilation=dilation,
                      padding=((kernel_size - 1) * dilation) // 2, bias=True),
            nn.GELU()
        )
    else:
        return nn.Sequential(
            nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                      dilation=dilation,
                      padding=((kernel_size - 1) * dilation) // 2, bias=True)
        )



def plt_attention(attention, h, w):
    col = len(attention) // 2
    fig = plt.figure(figsize=(10, 8))

    for i in range(len(attention)):
        viz = attention[i][0, :, :, h, w].detach().cpu().numpy()
        # viz = viz[7:-7, 7:-7]
        if i == 0:
            viz_all = viz
        else:
            viz_all = viz_all + viz

        ax1 = fig.add_subplot(2, col, i + 1)
        img = ax1.imshow(viz, cmap="rainbow", interpolation="bilinear")
        ax1.scatter(w, h, color='grey', s=300, alpha=0.5)
        ax1.scatter(w, h, color='red', s=150, alpha=0.5)
        plt.title(" Iteration %d" % (i + 1))
        if i == len(attention) - 1:
            plt.title(" Final Iteration")
        plt.xticks([])
        plt.yticks([])


    # tight layout
    plt.tight_layout()
    # save the figure
    buf = BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    plt.close()
    # convert the figure to an array
    img = Image.open(buf)
    img = np.array(img)
    return img


class FlowDecoder(nn.Module):
    # can reduce 25% of training time.
    def __init__(self, ch_in):
        super(FlowDecoder, self).__init__()
        self.conv1 = conv(ch_in, 256, kernel_size=1)
        self.conv2 = conv(256, 128, kernel_size=1)
        self.conv3 = conv(256 + 128, 96, kernel_size=1)
        self.conv4 = conv(96 + 128, 64, kernel_size=1)
        self.conv5 = conv(96 + 64, 32, kernel_size=1)

        self.feat_dim = 32
        self.predict_flow = conv(64 + 32, 2, isReLU=False)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv2(x1)
        x3 = self.conv3(torch.cat([x1, x2], dim=1))
        x4 = self.conv4(torch.cat([x2, x3], dim=1))
        x5 = self.conv5(torch.cat([x3, x4], dim=1))
        flow = self.predict_flow(torch.cat([x4, x5], dim=1))
        return flow


class FFV1DNN(nn.Module):
    def __init__(self,
                 num_scales=8,
                 num_cells=256,
                 upsample_factor=8,
                 feature_channels=256,
                 scale_factor=16,
                 num_layers=6,
                 ):
        super(FFV1DNN, self).__init__()
        self.ffv1 = V1(spatial_num=num_cells // num_scales, scale_num=num_scales, scale_factor=scale_factor,
                       kernel_radius=7, num_ft=num_cells // num_scales,
                       kernel_size=6, average_time=True)
        self.v1_kz = 7
        self.scale_factor = scale_factor
        scale_each_level = np.exp(1 / (num_scales - 1) * np.log(1 / scale_factor))
        self.scale_num = num_scales
        self.scale_each_level = scale_each_level
        v1_channel = self.ffv1.num_after_st
        self.num_scales = num_scales
        self.MT_channel = feature_channels
        assert self.MT_channel == v1_channel
        self.feature_channels = feature_channels

        self.upsample_factor = upsample_factor
        self.num_layers = num_layers
        # convex upsampling: concat feature0 and flow as input
        self.upsampler_1 = nn.Sequential(nn.Conv2d(2 + feature_channels, 256, 3, 1, 1),
                                         nn.ReLU(inplace=True),
                                         nn.Conv2d(256, 256, 3, 1, 1),
                                         nn.ReLU(inplace=True),
                                         nn.Conv2d(256, upsample_factor ** 2 * 9, 3, 1, 1))
        self.decoder = FlowDecoder(feature_channels)
        self.conv_feat = nn.ModuleList([conv(v1_channel, feature_channels, 1) for i in range(num_scales)])
        self.MT = FeatureTransformer(d_model=feature_channels, num_layers=self.num_layers)

    # 2*2*8*scale`
    def upsample_flow(self, flow, feature, upsampler=None, bilinear=False, upsample_factor=4):
        if bilinear:
            up_flow = F.interpolate(flow, scale_factor=upsample_factor,
                                    mode='bilinear', align_corners=True) * upsample_factor
        else:
            # convex upsampling
            concat = torch.cat((flow, feature), dim=1)
            mask = upsampler(concat)
            b, flow_channel, h, w = flow.shape
            mask = mask.view(b, 1, 9, upsample_factor, upsample_factor, h, w)  # [B, 1, 9, K, K, H, W]
            mask = torch.softmax(mask, dim=2)

            up_flow = F.unfold(upsample_factor * flow, [3, 3], padding=1)
            up_flow = up_flow.view(b, flow_channel, 9, 1, 1, h, w)  # [B, 2, 9, 1, 1, H, W]

            up_flow = torch.sum(mask * up_flow, dim=2)  # [B, 2, K, K, H, W]
            up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)  # [B, 2, K, H, K, W]
            up_flow = up_flow.reshape(b, flow_channel, upsample_factor * h,
                                      upsample_factor * w)  # [B, 2, K*H, K*W]

        return up_flow

    def forward(self, image_list, mix_enable=True, layer=6):
        if layer is not None:
            self.MT.num_layers = layer
            self.num_layers = layer
        results_dict = {}
        padding = self.v1_kz * self.scale_factor
        with torch.no_grad():
            if image_list[0].max() > 10:
                image_list = [img / 255.0 for img in image_list]  # [B, 1, H, W]  0-1
            if image_list[0].shape[1] == 3:
                # convert to gray using transform Gray = R*0.299 + G*0.587 + B*0.114
                image_list = [img[:, 0, :, :] * 0.299 + img[:, 1, :, :] * 0.587 + img[:, 2, :, :] * 0.114 for img in
                              image_list]
                image_list = [img.unsqueeze(1) for img in image_list]

        B, _, H, W = image_list[0].shape
        MT_size = (H // 8, W // 8)
        with autocast(enabled=mix_enable):
            # with torch.no_grad(): # TODO: only for test wheather a trainable V1 is needed.
            st_component = self.ffv1(image_list)
            # viz_img_seq(image_scale, if_debug=True)
            if self.num_layers == 0:
                motion_feature = [st_component]
                flows = [self.decoder(feature) for feature in motion_feature]
                flows_up = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
                results_dict["flow_seq"] = flows_up
                return results_dict
            motion_feature, attn = self.MT.forward_save_mem(st_component)
            flow_v1 = self.decoder(st_component)

            flows = [flow_v1] + [self.decoder(feature) for feature in motion_feature]
            flows_bi = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
            flows_up = [flows_bi[0]] + \
                       [self.upsample_flow(flows, upsampler=self.upsampler_1, feature=attn, upsample_factor=8) for
                        flows, attn in zip(flows[1:], attn)]
            assert len(flows_bi) == len(flows_up)
            results_dict["flow_seq"] = flows_up
            results_dict["flow_seq_bi"] = flows_bi
        return results_dict

    def forward_test(self, image_list, mix_enable=True, layer=6):
        if layer is not None:
            self.MT.num_layers = layer
            self.num_layers = layer
        results_dict = {}
        padding = self.v1_kz * self.scale_factor
        with torch.no_grad():
            if image_list[0].max() > 10:
                image_list = [img / 255.0 for img in image_list]  # [B, 1, H, W]  0-1

        B, _, H, W = image_list[0].shape
        MT_size = (H // 8, W // 8)
        with autocast(enabled=mix_enable):
            st_component = self.ffv1(image_list)
            # viz_img_seq(image_scale, if_debug=True)
            if self.num_layers == 0:
                motion_feature = [st_component]
                flows = [self.decoder(feature) for feature in motion_feature]
                flows_up = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
                results_dict["flow_seq"] = flows_up
                return results_dict
            motion_feature, attn, _ = self.MT.forward_save_mem(st_component)
            flow_v1 = self.decoder(st_component)
            flows = [flow_v1] + [self.decoder(feature) for feature in motion_feature]
            flows_bi = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
            flows_up = [flows_bi[0]] + \
                       [self.upsample_flow(flows, upsampler=self.upsampler_1, feature=attn, upsample_factor=8) for
                        flows, attn in zip(flows[1:], attn)]
            assert len(flows_bi) == len(flows_up)
            results_dict["flow_seq"] = flows_up
            results_dict["flow_seq_bi"] = flows_bi
        return results_dict
        
    @torch.no_grad()
    def forward_viz(self, image_list, layer=None, x=50, y=50):
        x = x / 100
        y = y / 100
        if layer is not None:
            self.MT.num_layers = layer
        results_dict = {}
        padding = self.v1_kz * self.scale_factor
        with torch.no_grad():
            if image_list[0].max() > 10:
                image_list = [img / 255.0 for img in image_list]  # [B, 1, H, W]  0-1
            if image_list[0].shape[1] == 3:
                # convert to gray using transform Gray = R*0.299 + G*0.587 + B*0.114
                image_list = [img[:, 0, :, :] * 0.299 + img[:, 1, :, :] * 0.587 + img[:, 2, :, :] * 0.114 for img in
                              image_list]
                image_list = [img.unsqueeze(1) for img in image_list]
        image_list_ori = deepcopy(image_list)

        B, _, H, W = image_list[0].shape
        MT_size = (H // 8, W // 8)
        with autocast(enabled=True):
            st_component = self.ffv1(image_list)
            activation = self.ffv1.visualize_activation(st_component)
            # viz_img_seq(image_scale, if_debug=True)
            motion_feature, attn, attn_viz = self.MT(st_component)
            flow_v1 = self.decoder(st_component)

            flows = [flow_v1] + [self.decoder(feature) for feature in motion_feature]
            flows_bi = [self.upsample_flow(flow, feature=None, bilinear=True, upsample_factor=8) for flow in flows]
            flows_up = [flows_bi[0]] + \
                       [self.upsample_flow(flows, upsampler=self.upsampler_1, feature=attn, upsample_factor=8) for
                        flows, attn in zip(flows[1:], attn)]
            assert len(flows_bi) == len(flows_up)
            results_dict["flow_seq"] = flows_up
            
        flows_up = flows_up[:-1]
        attn_viz = attn_viz
        print(len(flows_up), len(attn_viz))

        
        flow = plt_show_img_flow(image_list_ori, flows_up)
        h = int(MT_size[0] * y)
        w = int(MT_size[1] * x)
        attention = plt_attention(attn_viz, h=h, w=w)
        print("done")
        results_dict["activation"] = activation
        results_dict["attention"] = attention
        results_dict["flow"] = flow
        plt.clf()
        plt.cla()
        plt.close()

        return results_dict

    def num_parameters(self):
        return sum(
            [p.data.nelement() if p.requires_grad else 0 for p in self.parameters()])

    def init_weights(self):
        for layer in self.named_modules():
            if isinstance(layer, nn.Conv2d):
                nn.init.kaiming_normal_(layer.weight)
                if layer.bias is not None:
                    nn.init.constant_(layer.bias, 0)
            if isinstance(layer, nn.Conv1d):
                nn.init.kaiming_normal_(layer.weight)
                if layer.bias is not None:
                    nn.init.constant_(layer.bias, 0)

            elif isinstance(layer, nn.ConvTranspose2d):
                nn.init.kaiming_normal_(layer.weight)
                if layer.bias is not None:
                    nn.init.constant_(layer.bias, 0)

    @staticmethod
    def demo(file=None):
        import time
        from utils import torch_utils as utils
        frame_list = [torch.randn([4, 1, 512, 512], device="cuda")] * 11
        model = FFV1DNN(num_scales=8, scale_factor=16, num_cells=256, upsample_factor=8, num_layers=6,
                        feature_channels=256).cuda()
        if file is not None:
            model = utils.restore_model(model, file)
        print(model.num_parameters())
        for i in range(100):
            start = time.time()
            output = model.forward_viz(frame_list, layer=7)
            # print(output["flow_seq"][-1])
            torch.mean(output["flow_seq"][-1]).backward()
            print(torch.any(torch.isnan(output["flow_seq"][-1])))
            end = time.time()
            print(end - start)
            print("#================================++#")


if __name__ == '__main__':
    FFV1DNN.demo(None)