ZoniaChatbot commited on
Commit
645f987
·
verified ·
1 Parent(s): add55d9

Upload 6 files

Browse files
Files changed (6) hide show
  1. Dockerfile +56 -0
  2. README.md +5 -7
  3. app.py +219 -0
  4. gitattributes +35 -0
  5. packages.txt +3 -0
  6. requirements.txt +5 -0
Dockerfile ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM ubuntu:22.04
2
+
3
+ # Install Python and necessary packages
4
+ RUN apt-get update && apt-get install -y python3.10 python3-pip
5
+
6
+ # Create a user and necessary directories
7
+ RUN useradd -m -u 1001 user && mkdir -p /home/user/app/cache
8
+
9
+ RUN apt-get install -y git git-lfs ffmpeg libsm6 libxext6 cmake rsync libgl1-mesa-glx
10
+ RUN git lfs install
11
+
12
+ # Ensure the cache directory is writable by the user
13
+ RUN chown -R user:user /home/user/app/cache && chmod -R 777 /home/user/app/cache
14
+
15
+ # Install additional packages from packages.txt
16
+ RUN --mount=target=/tmp/packages.txt,source=packages.txt apt-get update && \
17
+ xargs -r -a /tmp/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/*
18
+
19
+ # Install Python requirements
20
+ RUN --mount=target=/tmp/requirements.txt,source=requirements.txt pip install --no-cache-dir -r /tmp/requirements.txt
21
+
22
+ WORKDIR /home/user/app
23
+
24
+ # Install specific versions of pip and other packages
25
+ RUN pip install --no-cache-dir pip==22.3.1 && \
26
+ pip install --no-cache-dir datasets "huggingface-hub>=0.19" "hf-transfer>=0.1.4" "protobuf<4" "click<8.1" "pydantic~=1.0"
27
+ RUN pip freeze > /tmp/freeze.txt
28
+
29
+ # Install Gradio and other dependencies
30
+ RUN pip install --no-cache-dir gradio[oauth]==4.38.1 "uvicorn>=0.14.0" spaces
31
+
32
+ # Copy application files and set correct ownership
33
+ COPY --link --chown=1001:1001 ./ /home/user/app
34
+
35
+ #EXPOSE 7860
36
+
37
+ # Moved up to where the user is added
38
+ #RUN mkdir cache
39
+
40
+ # Set environment variables
41
+ #ENV TRANSFORMERS_CACHE=/home/user/app/cache (deprecated)
42
+ ENV HF_HOME=/home/user/app/cache
43
+ ENV GRADIO_SERVER_NAME="0.0.0.0"
44
+ ENV GRADIO_SERVER_PORT=7860
45
+
46
+ # Switch to the user
47
+ USER user
48
+
49
+ # Copy the app file
50
+ COPY app.py .
51
+
52
+ # Debug: Check permissions of cache directory
53
+ RUN ls -l /home/user/app && ls -l /home/user/app/cache
54
+
55
+ # Run the app
56
+ CMD ["python3", "app.py"]
README.md CHANGED
@@ -1,13 +1,11 @@
1
  ---
2
- title: Zonia Chatbot Tts
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 5.13.1
8
  app_file: app.py
9
  pinned: false
10
- license: cc-by-nc-4.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Explore MMS Finetuning
3
+ emoji: 🌍
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: docker
 
7
  app_file: app.py
8
  pinned: false
 
9
  ---
10
 
11
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from transformers import pipeline
4
+
5
+ import numpy as np
6
+ import gradio as gr
7
+
8
+ def _grab_best_device(use_gpu=True):
9
+ if torch.cuda.device_count() > 0 and use_gpu:
10
+ device = 0 #"cuda"
11
+ else:
12
+ device = -1 #"cpu"
13
+ #device = 0 if torch.cuda.is_available() else -1
14
+
15
+ return device
16
+
17
+ device = _grab_best_device()
18
+
19
+ default_model_per_language = {
20
+ "spanish": "facebook/mms-tts-spa",
21
+ "tamil": "facebook/mms-tts-tam",
22
+ "gujarati": "facebook/mms-tts-guj",
23
+ "marathi": "facebook/mms-tts-mar",
24
+ #"english": "kakao-enterprise/vits-ljs",
25
+ "english": "facebook/mms-tts-eng",
26
+ }
27
+
28
+ models_per_language = {
29
+ "english": [
30
+ "ylacombe/vits_ljs_midlands_male_monospeaker",
31
+ ],
32
+ "spanish": [
33
+ "ylacombe/mms-spa-finetuned-chilean-monospeaker",
34
+ ],
35
+ "tamil": [
36
+ "ylacombe/mms-tam-finetuned-monospeaker",
37
+ ],
38
+ "gujarati" : ["ylacombe/mms-guj-finetuned-monospeaker"],
39
+ "marathi": ["ylacombe/mms-mar-finetuned-monospeaker"]
40
+ }
41
+
42
+ HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"
43
+
44
+
45
+ pipe_dict = {
46
+ "current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
47
+ "pipe": pipeline("text-to-speech", model=HUB_PATH, device=device),
48
+ "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device),
49
+ "language": "english",
50
+ }
51
+
52
+ title = """
53
+ # Explore MMS finetuning
54
+ ## Or how to access truely multilingual TTS
55
+
56
+ Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
57
+
58
+ Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
59
+ and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
60
+
61
+ Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
62
+
63
+ Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
64
+ """
65
+
66
+ max_speakers = 15
67
+
68
+
69
+ # Inference
70
+ def generate_audio(text, model_id, language):
71
+
72
+ if pipe_dict["language"] != language:
73
+ gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
74
+ pipe_dict["language"] = language
75
+ pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device)
76
+
77
+ if pipe_dict["current_model"] != model_id:
78
+ gr.Warning("Model has changed - loading new model")
79
+ pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device)
80
+ pipe_dict["current_model"] = model_id
81
+
82
+ num_speakers = pipe_dict["pipe"].model.config.num_speakers
83
+
84
+ out = []
85
+ # first generate original model result
86
+ output = pipe_dict["original_pipe"](text)
87
+ output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
88
+ visible=True)
89
+ out.append(output)
90
+
91
+
92
+ if num_speakers>1:
93
+ for i in range(min(num_speakers, max_speakers - 1)):
94
+ forward_params = {"speaker_id": i}
95
+ output = pipe_dict["pipe"](text, forward_params=forward_params)
96
+
97
+ output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
98
+ visible=True)
99
+ out.append(output)
100
+ out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
101
+ else:
102
+ output = pipe_dict["pipe"](text)
103
+ output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
104
+ visible=True)
105
+ out.append(output)
106
+ out.extend([gr.Audio(visible=False)]*(max_speakers-2))
107
+ return out
108
+
109
+
110
+ css = """
111
+ #container{
112
+ margin: 0 auto;
113
+ max-width: 80rem;
114
+ }
115
+ #intro{
116
+ max-width: 100%;
117
+ text-align: center;
118
+ margin: 0 auto;
119
+ }
120
+ """
121
+ # Gradio blocks demo
122
+ with gr.Blocks(css=css) as demo_blocks:
123
+ gr.Markdown(title, elem_id="intro")
124
+
125
+ with gr.Row():
126
+ with gr.Column():
127
+ inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
128
+ btn = gr.Button("Generate Audio!")
129
+ language = gr.Dropdown(
130
+ default_model_per_language.keys(),
131
+ value = "spanish",
132
+ label = "language",
133
+ info = "Language that you want to test"
134
+ )
135
+
136
+ model_id = gr.Dropdown(
137
+ models_per_language["spanish"],
138
+ value="ylacombe/mms-spa-finetuned-chilean-monospeaker",
139
+ label="Model",
140
+ info="Model you want to test",
141
+ )
142
+
143
+ with gr.Column():
144
+ outputs = []
145
+ for i in range(max_speakers):
146
+ out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
147
+ outputs.append(out_audio)
148
+
149
+ with gr.Accordion("Datasets and models details", open=False):
150
+ gr.Markdown("""
151
+
152
+ For each language, we used 100 to 150 samples of a single speaker to finetune the model.
153
+
154
+ ### Spanish
155
+
156
+ * **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
157
+ * **Datasets**:
158
+ - [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
159
+
160
+ ### Tamil
161
+
162
+ * **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
163
+ * **Datasets**:
164
+ - [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
165
+
166
+ ### Gujarati
167
+
168
+ * **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
169
+ * **Datasets**:
170
+ - [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).
171
+
172
+ ### Marathi
173
+
174
+ * **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
175
+ * **Datasets**:
176
+ - [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
177
+
178
+ ### English
179
+
180
+ * **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
181
+ * **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
182
+
183
+
184
+ """)
185
+
186
+ with gr.Accordion("Run VITS and MMS with transformers", open=False):
187
+ gr.Markdown(
188
+ """
189
+ ```bash
190
+ pip install transformers
191
+ ```
192
+ ```py
193
+ from transformers import pipeline
194
+ import scipy
195
+ pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
196
+
197
+ results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")
198
+
199
+ # write to a wav file
200
+ scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
201
+ ```
202
+ """
203
+ )
204
+
205
+
206
+ language.change(lambda language: gr.Dropdown(
207
+ models_per_language[language],
208
+ value=models_per_language[language][0],
209
+ label="Model",
210
+ info="Model you want to test",
211
+ ),
212
+ language,
213
+ model_id
214
+ )
215
+
216
+ btn.click(generate_audio, [inp_text, model_id, language], outputs)
217
+
218
+
219
+ demo_blocks.queue().launch()
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
packages.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ festival
2
+ espeak-ng
3
+ mbrola
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers
2
+ torch==2.0.1
3
+ torchvision==0.15.2
4
+ torchaudio==2.0.2
5
+ phonemizer