ZoniaChatbot commited on
Commit
c8d64e8
·
verified ·
1 Parent(s): 40e8df4

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +219 -0
app.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from transformers import pipeline
4
+
5
+ import numpy as np
6
+ import gradio as gr
7
+
8
+ def _grab_best_device(use_gpu=True):
9
+ if torch.cuda.device_count() > 0 and use_gpu:
10
+ device = 0 #"cuda"
11
+ else:
12
+ device = -1 #"cpu"
13
+ #device = 0 if torch.cuda.is_available() else -1
14
+
15
+ return device
16
+
17
+ device = _grab_best_device()
18
+
19
+ default_model_per_language = {
20
+ "spanish": "facebook/mms-tts-spa",
21
+ "tamil": "facebook/mms-tts-tam",
22
+ "gujarati": "facebook/mms-tts-guj",
23
+ "marathi": "facebook/mms-tts-mar",
24
+ #"english": "kakao-enterprise/vits-ljs",
25
+ "english": "facebook/mms-tts-eng",
26
+ }
27
+
28
+ models_per_language = {
29
+ "english": [
30
+ "ylacombe/vits_ljs_midlands_male_monospeaker",
31
+ ],
32
+ "spanish": [
33
+ "ylacombe/mms-spa-finetuned-chilean-monospeaker",
34
+ ],
35
+ "tamil": [
36
+ "ylacombe/mms-tam-finetuned-monospeaker",
37
+ ],
38
+ "gujarati" : ["ylacombe/mms-guj-finetuned-monospeaker"],
39
+ "marathi": ["ylacombe/mms-mar-finetuned-monospeaker"]
40
+ }
41
+
42
+ HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker"
43
+
44
+
45
+ pipe_dict = {
46
+ "current_model": "ylacombe/vits_ljs_midlands_male_monospeaker",
47
+ "pipe": pipeline("text-to-speech", model=HUB_PATH, device=device),
48
+ "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device),
49
+ "language": "english",
50
+ }
51
+
52
+ title = """
53
+ # Explore MMS finetuning
54
+ ## Or how to access truely multilingual TTS
55
+
56
+ Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits).
57
+
58
+ Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html),
59
+ and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts).
60
+
61
+ Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**.
62
+
63
+ Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)!
64
+ """
65
+
66
+ max_speakers = 15
67
+
68
+
69
+ # Inference
70
+ def generate_audio(text, model_id, language):
71
+
72
+ if pipe_dict["language"] != language:
73
+ gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
74
+ pipe_dict["language"] = language
75
+ pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device)
76
+
77
+ if pipe_dict["current_model"] != model_id:
78
+ gr.Warning("Model has changed - loading new model")
79
+ pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device)
80
+ pipe_dict["current_model"] = model_id
81
+
82
+ num_speakers = pipe_dict["pipe"].model.config.num_speakers
83
+
84
+ out = []
85
+ # first generate original model result
86
+ output = pipe_dict["original_pipe"](text)
87
+ output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
88
+ visible=True)
89
+ out.append(output)
90
+
91
+
92
+ if num_speakers>1:
93
+ for i in range(min(num_speakers, max_speakers - 1)):
94
+ forward_params = {"speaker_id": i}
95
+ output = pipe_dict["pipe"](text, forward_params=forward_params)
96
+
97
+ output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
98
+ visible=True)
99
+ out.append(output)
100
+ out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
101
+ else:
102
+ output = pipe_dict["pipe"](text)
103
+ output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
104
+ visible=True)
105
+ out.append(output)
106
+ out.extend([gr.Audio(visible=False)]*(max_speakers-2))
107
+ return out
108
+
109
+
110
+ css = """
111
+ #container{
112
+ margin: 0 auto;
113
+ max-width: 80rem;
114
+ }
115
+ #intro{
116
+ max-width: 100%;
117
+ text-align: center;
118
+ margin: 0 auto;
119
+ }
120
+ """
121
+ # Gradio blocks demo
122
+ with gr.Blocks(css=css) as demo_blocks:
123
+ gr.Markdown(title, elem_id="intro")
124
+
125
+ with gr.Row():
126
+ with gr.Column():
127
+ inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?")
128
+ btn = gr.Button("Generate Audio!")
129
+ language = gr.Dropdown(
130
+ default_model_per_language.keys(),
131
+ value = "spanish",
132
+ label = "language",
133
+ info = "Language that you want to test"
134
+ )
135
+
136
+ model_id = gr.Dropdown(
137
+ models_per_language["spanish"],
138
+ value="ylacombe/mms-spa-finetuned-chilean-monospeaker",
139
+ label="Model",
140
+ info="Model you want to test",
141
+ )
142
+
143
+ with gr.Column():
144
+ outputs = []
145
+ for i in range(max_speakers):
146
+ out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
147
+ outputs.append(out_audio)
148
+
149
+ with gr.Accordion("Datasets and models details", open=False):
150
+ gr.Markdown("""
151
+
152
+ For each language, we used 100 to 150 samples of a single speaker to finetune the model.
153
+
154
+ ### Spanish
155
+
156
+ * **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa).
157
+ * **Datasets**:
158
+ - [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish).
159
+
160
+ ### Tamil
161
+
162
+ * **Model**: [Tamil MMS TTS](https://huggingface.co/facebook/mms-tts-tam).
163
+ * **Datasets**:
164
+ - [Tamil TTS dataset](https://huggingface.co/datasets/ylacombe/google-tamil).
165
+
166
+ ### Gujarati
167
+
168
+ * **Model**: [Gujarati MMS TTS](https://huggingface.co/facebook/mms-tts-guj).
169
+ * **Datasets**:
170
+ - [Gujarati TTS dataset](https://huggingface.co/datasets/ylacombe/google-gujarati).
171
+
172
+ ### Marathi
173
+
174
+ * **Model**: [Marathi MMS TTS](https://huggingface.co/facebook/mms-tts-mar).
175
+ * **Datasets**:
176
+ - [Marathi TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-marathi).
177
+
178
+ ### English
179
+
180
+ * **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs)
181
+ * **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs).
182
+
183
+
184
+ """)
185
+
186
+ with gr.Accordion("Run VITS and MMS with transformers", open=False):
187
+ gr.Markdown(
188
+ """
189
+ ```bash
190
+ pip install transformers
191
+ ```
192
+ ```py
193
+ from transformers import pipeline
194
+ import scipy
195
+ pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0)
196
+
197
+ results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe")
198
+
199
+ # write to a wav file
200
+ scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze())
201
+ ```
202
+ """
203
+ )
204
+
205
+
206
+ language.change(lambda language: gr.Dropdown(
207
+ models_per_language[language],
208
+ value=models_per_language[language][0],
209
+ label="Model",
210
+ info="Model you want to test",
211
+ ),
212
+ language,
213
+ model_id
214
+ )
215
+
216
+ btn.click(generate_audio, [inp_text, model_id, language], outputs)
217
+
218
+
219
+ demo_blocks.queue().launch()