Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
f3f292e
1
Parent(s):
e970aef
Add accelerate dependencies
Browse files- app.py +49 -123
- requirements.txt +2 -1
app.py
CHANGED
@@ -4,136 +4,62 @@ import torch
|
|
4 |
|
5 |
# Configuration
|
6 |
MODEL_NAME = "RekaAI/reka-flash-3"
|
7 |
-
DEFAULT_MAX_LENGTH =
|
8 |
DEFAULT_TEMPERATURE = 0.7
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
def generate_response(
|
37 |
-
message,
|
38 |
-
chat_history,
|
39 |
-
system_prompt,
|
40 |
-
max_length,
|
41 |
-
temperature,
|
42 |
-
top_p,
|
43 |
-
top_k,
|
44 |
-
repetition_penalty,
|
45 |
-
show_reasoning
|
46 |
-
):
|
47 |
-
"""Generate a response from Reka Flash-3 with reasoning tags."""
|
48 |
-
try:
|
49 |
-
# Format chat history and prompt (multi-round conversation)
|
50 |
-
history_str = ""
|
51 |
-
for user_msg, assistant_msg in chat_history:
|
52 |
-
history_str += f"human: {user_msg} <sep> assistant: {assistant_msg} <sep> "
|
53 |
-
prompt = f"{system_prompt} <sep> human: {message} <sep> assistant: <thinking>\n"
|
54 |
-
|
55 |
-
# Tokenize input
|
56 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
57 |
-
|
58 |
-
# Generate response with budget forcing
|
59 |
-
outputs = model.generate(
|
60 |
-
**inputs,
|
61 |
-
max_new_tokens=max_length,
|
62 |
-
temperature=temperature,
|
63 |
-
top_p=top_p,
|
64 |
-
top_k=top_k,
|
65 |
-
repetition_penalty=repetition_penalty,
|
66 |
-
do_sample=True,
|
67 |
-
eos_token_id=tokenizer.convert_tokens_to_ids("<sep>"), # Stop at <sep>
|
68 |
-
pad_token_id=tokenizer.eos_token_id
|
69 |
-
)
|
70 |
-
|
71 |
-
# Decode and clean response
|
72 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
73 |
-
response = response[len(prompt):].split("<sep>")[0].strip() # Extract assistant response
|
74 |
-
|
75 |
-
# Parse reasoning and final answer
|
76 |
-
if "</thinking>" in response:
|
77 |
-
reasoning, final_answer = response.split("</thinking>", 1)
|
78 |
-
reasoning = reasoning.replace("<thinking>", "").strip()
|
79 |
-
final_answer = final_answer.strip()
|
80 |
-
else:
|
81 |
-
reasoning = ""
|
82 |
-
final_answer = response
|
83 |
-
|
84 |
-
# Update chat history (drop reasoning to save tokens)
|
85 |
-
chat_history.append({"role": "user", "content": message})
|
86 |
-
chat_history.append({"role": "assistant", "content": final_answer})
|
87 |
-
|
88 |
-
# Display reasoning if requested
|
89 |
-
reasoning_display = f"**Reasoning:**\n{reasoning}" if show_reasoning and reasoning else ""
|
90 |
-
return "", chat_history, reasoning_display
|
91 |
-
|
92 |
-
except Exception as e:
|
93 |
-
error_msg = f"Error: {str(e)}"
|
94 |
-
gr.Warning(error_msg)
|
95 |
-
return "", chat_history, error_msg
|
96 |
|
97 |
# Gradio Interface
|
98 |
-
with gr.Blocks(title="Reka Flash-3 Chat"
|
99 |
-
gr.Markdown(""
|
100 |
-
|
101 |
-
*Powered by [Reka AI](https://www.reka.ai/)* - A 21B parameter reasoning model optimized for CPU.
|
102 |
-
""")
|
103 |
-
|
104 |
-
with gr.Accordion("Deployment Instructions", open=True):
|
105 |
-
gr.Textbox(
|
106 |
-
value="""To deploy on Hugging Face Spaces:
|
107 |
-
1. Request access to RekaAI/reka-flash-3 from Reka AI.
|
108 |
-
2. Use a Pro subscription with zero-GPU (CPU-only) hardware.
|
109 |
-
3. Ensure 32GB+ CPU memory for 4-bit quantization.
|
110 |
-
4. Install dependencies: gradio, transformers, torch, bitsandbytes.""",
|
111 |
-
label="How to Deploy",
|
112 |
-
interactive=False
|
113 |
-
)
|
114 |
-
|
115 |
with gr.Row():
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
max_length = gr.Slider(128, 512, value=DEFAULT_MAX_LENGTH, label="Max Length", step=64)
|
125 |
-
temperature = gr.Slider(0.1, 2.0, value=DEFAULT_TEMPERATURE, label="Temperature", step=0.1)
|
126 |
-
top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p", step=0.05)
|
127 |
-
top_k = gr.Slider(1, 100, value=50, label="Top-k", step=1)
|
128 |
-
repetition_penalty = gr.Slider(0.1, 2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
129 |
-
|
130 |
system_prompt = gr.Textbox(label="System Prompt", value=SYSTEM_PROMPT, lines=4)
|
131 |
-
show_reasoning = gr.Checkbox(label="Show Reasoning", value=True)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
outputs = [message, chatbot, reasoning_display]
|
136 |
submit_btn.click(generate_response, inputs=inputs, outputs=outputs)
|
137 |
message.submit(generate_response, inputs=inputs, outputs=outputs)
|
138 |
|
139 |
-
demo.launch(
|
|
|
4 |
|
5 |
# Configuration
|
6 |
MODEL_NAME = "RekaAI/reka-flash-3"
|
7 |
+
DEFAULT_MAX_LENGTH = 256
|
8 |
DEFAULT_TEMPERATURE = 0.7
|
9 |
+
SYSTEM_PROMPT = """You are Reka Flash-3, a helpful AI assistant created by Reka AI."""
|
10 |
+
|
11 |
+
# Load model and tokenizer
|
12 |
+
quantization_config = BitsAndBytesConfig(
|
13 |
+
load_in_4bit=True,
|
14 |
+
bnb_4bit_compute_dtype=torch.float16,
|
15 |
+
bnb_4bit_use_double_quant=True,
|
16 |
+
bnb_4bit_quant_type="nf4"
|
17 |
+
)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
MODEL_NAME,
|
21 |
+
quantization_config=quantization_config,
|
22 |
+
device_map="auto",
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
low_cpu_mem_usage=True
|
25 |
+
)
|
26 |
+
tokenizer.pad_token = tokenizer.eos_token
|
27 |
+
|
28 |
+
def generate_response(message, chat_history, system_prompt, max_length, temperature, top_p, top_k, repetition_penalty):
|
29 |
+
prompt = f"{system_prompt} <sep> human: {message} <sep> assistant: "
|
30 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
31 |
+
outputs = model.generate(
|
32 |
+
**inputs,
|
33 |
+
max_new_tokens=max_length,
|
34 |
+
temperature=temperature,
|
35 |
+
top_p=top_p,
|
36 |
+
top_k=top_k,
|
37 |
+
repetition_penalty=repetition_penalty,
|
38 |
+
do_sample=True,
|
39 |
+
pad_token_id=tokenizer.eos_token_id
|
40 |
)
|
41 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("<sep>")[2].strip()
|
42 |
+
chat_history.append({"user": message, "assistant": response})
|
43 |
+
return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Gradio Interface
|
46 |
+
with gr.Blocks(title="Reka Flash-3 Chat") as demo:
|
47 |
+
gr.Markdown("# Reka Flash-3 Chat Interface")
|
48 |
+
chatbot = gr.Chatbot(type="messages", height=400, label="Conversation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
with gr.Row():
|
50 |
+
message = gr.Textbox(label="Your Message", placeholder="Ask me anything...")
|
51 |
+
submit_btn = gr.Button("Send")
|
52 |
+
with gr.Accordion("Options", open=False):
|
53 |
+
max_length = gr.Slider(128, 512, value=DEFAULT_MAX_LENGTH, label="Max Length")
|
54 |
+
temperature = gr.Slider(0.1, 2.0, value=DEFAULT_TEMPERATURE, label="Temperature")
|
55 |
+
top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
|
56 |
+
top_k = gr.Slider(1, 100, value=50, label="Top-k")
|
57 |
+
repetition_penalty = gr.Slider(0.1, 2.0, value=1.1, label="Repetition Penalty")
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
system_prompt = gr.Textbox(label="System Prompt", value=SYSTEM_PROMPT, lines=4)
|
|
|
59 |
|
60 |
+
inputs = [message, chatbot, system_prompt, max_length, temperature, top_p, top_k, repetition_penalty]
|
61 |
+
outputs = [message, chatbot]
|
|
|
62 |
submit_btn.click(generate_response, inputs=inputs, outputs=outputs)
|
63 |
message.submit(generate_response, inputs=inputs, outputs=outputs)
|
64 |
|
65 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ gradio>=3.50
|
|
2 |
huggingface_hub==0.25.2
|
3 |
torch
|
4 |
transformers
|
5 |
-
bitsandbytes
|
|
|
|
2 |
huggingface_hub==0.25.2
|
3 |
torch
|
4 |
transformers
|
5 |
+
bitsandbytes
|
6 |
+
accelerate>=0.26.0
|