File size: 8,545 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from __future__ import annotations
import re
import warnings
from typing import Dict

from langchain.callbacks.manager import (
    AsyncCallbackManagerForChainRun,
    CallbackManagerForChainRun,
)
from langchain.chains.llm import LLMChain
from langchain.pydantic_v1 import Extra, root_validator
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from typing import List, Any, Optional
from langchain.prompts import PromptTemplate
import sys
import os
import json

sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from server.chat.knowledge_base_chat import knowledge_base_chat
from configs import VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, MAX_TOKENS

import asyncio
from server.agent import model_container
from pydantic import BaseModel, Field

async def search_knowledge_base_iter(database: str, query: str):
    response = await knowledge_base_chat(query=query,
                                         knowledge_base_name=database,
                                         model_name=model_container.MODEL.model_name,
                                         temperature=0.01,
                                         history=[],
                                         top_k=VECTOR_SEARCH_TOP_K,
                                         max_tokens=MAX_TOKENS,
                                         prompt_name="knowledge_base_chat",
                                         score_threshold=SCORE_THRESHOLD,
                                         stream=False)

    contents = ""
    async for data in response.body_iterator:  # 这里的data是一个json字符串
        data = json.loads(data)
        contents += data["answer"]
        docs = data["docs"]
    return contents


_PROMPT_TEMPLATE = """
用户会提出一个需要你查询知识库的问题,你应该按照我提供的思想进行思考
Question: ${{用户的问题}}
这些数据库是你能访问的,冒号之前是他们的名字,冒号之后是他们的功能:

{database_names}

你的回答格式应该按照下面的内容,请注意,格式内的```text 等标记都必须输出,这是我用来提取答案的标记。
```text
${{知识库的名称}}
```
```output
数据库查询的结果
```
答案: ${{答案}}

现在,这是我的问题:
问题: {question}

"""
PROMPT = PromptTemplate(
    input_variables=["question", "database_names"],
    template=_PROMPT_TEMPLATE,
)


class LLMKnowledgeChain(LLMChain):
    llm_chain: LLMChain
    llm: Optional[BaseLanguageModel] = None
    """[Deprecated] LLM wrapper to use."""
    prompt: BasePromptTemplate = PROMPT
    """[Deprecated] Prompt to use to translate to python if necessary."""
    database_names: Dict[str, str] = model_container.DATABASE
    input_key: str = "question"  #: :meta private:
    output_key: str = "answer"  #: :meta private:

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid
        arbitrary_types_allowed = True

    @root_validator(pre=True)
    def raise_deprecation(cls, values: Dict) -> Dict:
        if "llm" in values:
            warnings.warn(
                "Directly instantiating an LLMKnowledgeChain with an llm is deprecated. "
                "Please instantiate with llm_chain argument or using the from_llm "
                "class method."
            )
            if "llm_chain" not in values and values["llm"] is not None:
                prompt = values.get("prompt", PROMPT)
                values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
        return values

    @property
    def input_keys(self) -> List[str]:
        """Expect input key.

        :meta private:
        """
        return [self.input_key]

    @property
    def output_keys(self) -> List[str]:
        """Expect output key.

        :meta private:
        """
        return [self.output_key]

    def _evaluate_expression(self, dataset, query) -> str:
        try:
            output = asyncio.run(search_knowledge_base_iter(dataset, query))
        except Exception as e:
            output = "输入的信息有误或不存在知识库"
            return output
        return output

    def _process_llm_result(
            self,
            llm_output: str,
            llm_input: str,
            run_manager: CallbackManagerForChainRun
    ) -> Dict[str, str]:

        run_manager.on_text(llm_output, color="green", verbose=self.verbose)

        llm_output = llm_output.strip()
        text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
        if text_match:
            database = text_match.group(1).strip()
            output = self._evaluate_expression(database, llm_input)
            run_manager.on_text("\nAnswer: ", verbose=self.verbose)
            run_manager.on_text(output, color="yellow", verbose=self.verbose)
            answer = "Answer: " + output
        elif llm_output.startswith("Answer:"):
            answer = llm_output
        elif "Answer:" in llm_output:
            answer = "Answer: " + llm_output.split("Answer:")[-1]
        else:
            return {self.output_key: f"输入的格式不对: {llm_output}"}
        return {self.output_key: answer}

    async def _aprocess_llm_result(
            self,
            llm_output: str,
            run_manager: AsyncCallbackManagerForChainRun,
    ) -> Dict[str, str]:
        await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
        llm_output = llm_output.strip()
        text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
        if text_match:
            expression = text_match.group(1)
            output = self._evaluate_expression(expression)
            await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
            await run_manager.on_text(output, color="yellow", verbose=self.verbose)
            answer = "Answer: " + output
        elif llm_output.startswith("Answer:"):
            answer = llm_output
        elif "Answer:" in llm_output:
            answer = "Answer: " + llm_output.split("Answer:")[-1]
        else:
            raise ValueError(f"unknown format from LLM: {llm_output}")
        return {self.output_key: answer}

    def _call(
            self,
            inputs: Dict[str, str],
            run_manager: Optional[CallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
        _run_manager.on_text(inputs[self.input_key])
        data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
        llm_output = self.llm_chain.predict(
            database_names=data_formatted_str,
            question=inputs[self.input_key],
            stop=["```output"],
            callbacks=_run_manager.get_child(),
        )
        return self._process_llm_result(llm_output, inputs[self.input_key], _run_manager)

    async def _acall(
            self,
            inputs: Dict[str, str],
            run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
    ) -> Dict[str, str]:
        _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
        await _run_manager.on_text(inputs[self.input_key])
        data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
        llm_output = await self.llm_chain.apredict(
            database_names=data_formatted_str,
            question=inputs[self.input_key],
            stop=["```output"],
            callbacks=_run_manager.get_child(),
        )
        return await self._aprocess_llm_result(llm_output, inputs[self.input_key], _run_manager)

    @property
    def _chain_type(self) -> str:
        return "llm_knowledge_chain"

    @classmethod
    def from_llm(
            cls,
            llm: BaseLanguageModel,
            prompt: BasePromptTemplate = PROMPT,
            **kwargs: Any,
    ) -> LLMKnowledgeChain:
        llm_chain = LLMChain(llm=llm, prompt=prompt)
        return cls(llm_chain=llm_chain, **kwargs)


def search_knowledgebase_once(query: str):
    model = model_container.MODEL
    llm_knowledge = LLMKnowledgeChain.from_llm(model, verbose=True, prompt=PROMPT)
    ans = llm_knowledge.run(query)
    return ans


class KnowledgeSearchInput(BaseModel):
    location: str = Field(description="The query to be searched")


if __name__ == "__main__":
    result = search_knowledgebase_once("大数据的男女比例")
    print(result)