Spaces:
Running
Running
File size: 8,545 Bytes
5e9cd1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from __future__ import annotations
import re
import warnings
from typing import Dict
from langchain.callbacks.manager import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain.chains.llm import LLMChain
from langchain.pydantic_v1 import Extra, root_validator
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from typing import List, Any, Optional
from langchain.prompts import PromptTemplate
import sys
import os
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from server.chat.knowledge_base_chat import knowledge_base_chat
from configs import VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, MAX_TOKENS
import asyncio
from server.agent import model_container
from pydantic import BaseModel, Field
async def search_knowledge_base_iter(database: str, query: str):
response = await knowledge_base_chat(query=query,
knowledge_base_name=database,
model_name=model_container.MODEL.model_name,
temperature=0.01,
history=[],
top_k=VECTOR_SEARCH_TOP_K,
max_tokens=MAX_TOKENS,
prompt_name="knowledge_base_chat",
score_threshold=SCORE_THRESHOLD,
stream=False)
contents = ""
async for data in response.body_iterator: # 这里的data是一个json字符串
data = json.loads(data)
contents += data["answer"]
docs = data["docs"]
return contents
_PROMPT_TEMPLATE = """
用户会提出一个需要你查询知识库的问题,你应该按照我提供的思想进行思考
Question: ${{用户的问题}}
这些数据库是你能访问的,冒号之前是他们的名字,冒号之后是他们的功能:
{database_names}
你的回答格式应该按照下面的内容,请注意,格式内的```text 等标记都必须输出,这是我用来提取答案的标记。
```text
${{知识库的名称}}
```
```output
数据库查询的结果
```
答案: ${{答案}}
现在,这是我的问题:
问题: {question}
"""
PROMPT = PromptTemplate(
input_variables=["question", "database_names"],
template=_PROMPT_TEMPLATE,
)
class LLMKnowledgeChain(LLMChain):
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated] LLM wrapper to use."""
prompt: BasePromptTemplate = PROMPT
"""[Deprecated] Prompt to use to translate to python if necessary."""
database_names: Dict[str, str] = model_container.DATABASE
input_key: str = "question" #: :meta private:
output_key: str = "answer" #: :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating an LLMKnowledgeChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using the from_llm "
"class method."
)
if "llm_chain" not in values and values["llm"] is not None:
prompt = values.get("prompt", PROMPT)
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt)
return values
@property
def input_keys(self) -> List[str]:
"""Expect input key.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Expect output key.
:meta private:
"""
return [self.output_key]
def _evaluate_expression(self, dataset, query) -> str:
try:
output = asyncio.run(search_knowledge_base_iter(dataset, query))
except Exception as e:
output = "输入的信息有误或不存在知识库"
return output
return output
def _process_llm_result(
self,
llm_output: str,
llm_input: str,
run_manager: CallbackManagerForChainRun
) -> Dict[str, str]:
run_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
database = text_match.group(1).strip()
output = self._evaluate_expression(database, llm_input)
run_manager.on_text("\nAnswer: ", verbose=self.verbose)
run_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
return {self.output_key: f"输入的格式不对: {llm_output}"}
return {self.output_key: answer}
async def _aprocess_llm_result(
self,
llm_output: str,
run_manager: AsyncCallbackManagerForChainRun,
) -> Dict[str, str]:
await run_manager.on_text(llm_output, color="green", verbose=self.verbose)
llm_output = llm_output.strip()
text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL)
if text_match:
expression = text_match.group(1)
output = self._evaluate_expression(expression)
await run_manager.on_text("\nAnswer: ", verbose=self.verbose)
await run_manager.on_text(output, color="yellow", verbose=self.verbose)
answer = "Answer: " + output
elif llm_output.startswith("Answer:"):
answer = llm_output
elif "Answer:" in llm_output:
answer = "Answer: " + llm_output.split("Answer:")[-1]
else:
raise ValueError(f"unknown format from LLM: {llm_output}")
return {self.output_key: answer}
def _call(
self,
inputs: Dict[str, str],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
_run_manager.on_text(inputs[self.input_key])
data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
llm_output = self.llm_chain.predict(
database_names=data_formatted_str,
question=inputs[self.input_key],
stop=["```output"],
callbacks=_run_manager.get_child(),
)
return self._process_llm_result(llm_output, inputs[self.input_key], _run_manager)
async def _acall(
self,
inputs: Dict[str, str],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
await _run_manager.on_text(inputs[self.input_key])
data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()])
llm_output = await self.llm_chain.apredict(
database_names=data_formatted_str,
question=inputs[self.input_key],
stop=["```output"],
callbacks=_run_manager.get_child(),
)
return await self._aprocess_llm_result(llm_output, inputs[self.input_key], _run_manager)
@property
def _chain_type(self) -> str:
return "llm_knowledge_chain"
@classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
prompt: BasePromptTemplate = PROMPT,
**kwargs: Any,
) -> LLMKnowledgeChain:
llm_chain = LLMChain(llm=llm, prompt=prompt)
return cls(llm_chain=llm_chain, **kwargs)
def search_knowledgebase_once(query: str):
model = model_container.MODEL
llm_knowledge = LLMKnowledgeChain.from_llm(model, verbose=True, prompt=PROMPT)
ans = llm_knowledge.run(query)
return ans
class KnowledgeSearchInput(BaseModel):
location: str = Field(description="The query to be searched")
if __name__ == "__main__":
result = search_knowledgebase_once("大数据的男女比例")
print(result)
|