audio_to_text / app.py
aahmed10202's picture
Update app.py
3217ed0 verified
raw
history blame
1.69 kB
import streamlit as st
import requests
from transformers import pipeline
# Hugging Face Whisper API endpoint
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
# Function to send the audio file to the Hugging Face Whisper API
def query(file_data, my_key):
headers = {"Authorization": f"Bearer {my_key}"}
response = requests.post(API_URL, headers=headers, data=file_data)
if response.status_code == 200:
return response.json()
else:
return {"error": response.text}
# Streamlit UI elements
st.title("Transcription App")
st.write("Upload one or more .wav, .mp3, or .flac audio files, and get the transcription.")
# Get the user's Hugging Face API key
my_key = st.text_input("Enter your Hugging Face API Key", type="password")
# File uploader for audio files
uploaded_files = st.file_uploader("Choose audio file(s)", type=["mp3", "wav", "flac"], accept_multiple_files=True)
if my_key and uploaded_files: # Proceed only if the API key is provided and files are uploaded
st.write("Processing your files...")
results = {} # Store results for each file
for uploaded_file in uploaded_files:
file_data = uploaded_file.read() # Read the file content
st.write(f"Sending {uploaded_file.name} to API...")
output = query(file_data, my_key) # Send the file to the API
# Store the result
results[uploaded_file.name] = output
# Display the results
for file, result in results.items():
st.write(f"### Results for `{file}`:")
if "error" in result:
st.error(result["error"])
else:
st.json(result)