aakash0563 commited on
Commit
afad96b
·
1 Parent(s): b9ca8c8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -47
app.py CHANGED
@@ -1,9 +1,6 @@
1
  import gradio as gr
2
- import chromadb
3
- from langchain.document_loaders import PyPDFLoader
4
- from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from uuid import uuid4
6
  import google.generativeai as genai
 
7
  import re
8
  import os
9
 
@@ -14,31 +11,6 @@ GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
14
  genai.configure(api_key=GOOGLE_API_KEY)
15
  model = genai.GenerativeModel('gemini-pro') # Load the model
16
 
17
- # Necessary imports for Gradio
18
-
19
- text_splitter = RecursiveCharacterTextSplitter(
20
- chunk_size=800,
21
- chunk_overlap=50
22
- )
23
- client = chromadb.PersistentClient("test")
24
- collection = client.create_collection("test_data")
25
-
26
- def upload_pdf(file_path):
27
- loader = PyPDFLoader(file_path)
28
- pages = loader.load()
29
- documents = []
30
- for page in pages:
31
- docs = text_splitter.split_text(page.page_content)
32
- for doc in docs:
33
- documents.append({
34
- "text": docs, "meta_data": page.metadata,
35
- })
36
- collection.add(
37
- ids=[str(uuid4()) for _ in range(len(documents))],
38
- documents=[doc['text'][0] for doc in documents],
39
- metadatas=[doc['meta_data'] for doc in documents]
40
- )
41
- return f"PDF Uploaded Successfully. {collection.count()} chunks stored in ChromaDB"
42
 
43
 
44
 
@@ -58,27 +30,16 @@ def get_Answer(query):
58
  answer = model.generate_content(prompt).text
59
  return answer
60
 
61
- # # Define the Gradio interface
62
- # iface = gr.Interface(
63
- # fn=get_Answer,
64
- # inputs=gr.Textbox(lines=5, placeholder="Ask a question"), # Textbox for query
65
- # outputs="textbox", # Display the generated answer in a textbox
66
- # title="Answer Questions with Gemini-Pro",
67
- # description="Ask a question and get an answer based on context from a ChromaDB collection.",
68
- # )
69
-
70
- # # Launch the Gradio app
71
- # iface.launch(debug=True,share=True)
72
-
73
-
74
  # Define the Gradio interface
75
  iface = gr.Interface(
76
- fn=upload_pdf,
77
- inputs=["file"], # Specify a file input component
78
- outputs="textbox", # Display the output text in a textbox
79
- title="Upload PDF to ChromaDB",
80
- description="Upload a PDF file and store its text chunks in ChromaDB.",
81
  )
82
 
83
  # Launch the Gradio app
84
  iface.launch(debug=True,share=True)
 
 
 
1
  import gradio as gr
 
 
 
 
2
  import google.generativeai as genai
3
+ import upload_pdf
4
  import re
5
  import os
6
 
 
11
  genai.configure(api_key=GOOGLE_API_KEY)
12
  model = genai.GenerativeModel('gemini-pro') # Load the model
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
16
 
 
30
  answer = model.generate_content(prompt).text
31
  return answer
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  # Define the Gradio interface
34
  iface = gr.Interface(
35
+ fn=get_Answer,
36
+ inputs=gr.Textbox(lines=5, placeholder="Ask a question"), # Textbox for query
37
+ outputs="textbox", # Display the generated answer in a textbox
38
+ title="Answer Questions with Gemini-Pro",
39
+ description="Ask a question and get an answer based on context from a ChromaDB collection.",
40
  )
41
 
42
  # Launch the Gradio app
43
  iface.launch(debug=True,share=True)
44
+
45
+