aandrei404's picture
Update app.py
d219082
raw
history blame
917 Bytes
import gradio as gr
import tensorflow as tf
import pandas as pd
from tensorflow.keras.layers import TextVectorization
MAX_WORDS = 200000
df = pd.read_csv(os.path.join('.', 'dataset', 'train.csv'))
X = df['comment_text']
vectorizer = TextVectorization(max_tokens=MAX_WORDS,
output_sequence_length=1800,
output_mode='int')
vectorizer.adapt(X.values)
model = tf.keras.models.load_model('toxicity.h5')
def score_comment(comment):
vectorized_comment = vectorizer([comment])
results = model.predict(vectorized_comment)
text = ''
for idx, col in enumerate(df.columns[2:]):
text += '{}: {}\n'.format(col, results[0][idx]>0.5)
return text
interface = gr.Interface(fn=score_comment,
inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
outputs='text')
interface.launch()