import gradio as gr import os os.system('python -m spacy download fi_core_news_sm') import spacy from spacy import displacy nlp = spacy.load("fi_core_news_sm") def text_analysis(text): doc = nlp(text) html = displacy.render(doc, style="dep", page=True) html = ( "" + html + "" ) pos_count = { "char_count": len(text), "token_count": 0, } pos_tokens = [] for token in doc: pos_tokens.extend([(token.text, token.pos_), (" ", None)]) return pos_tokens, pos_count, html demo = gr.Interface( text_analysis, gr.Textbox(placeholder="Enter sentence here..."), ["highlight", "json", "html"], examples=[ ["What a beautiful morning for a walk!"], ["It was the best of times, it was the worst of times."], ], ) demo.launch()